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Abstract

Enhancer-promoter interaction (EPI) is a key mechanism underlying gene regulation. EPI prediction has always been a challenging task
because enhancers could regulate promoters of distant target genes. Although many machine learning models have been developed,
they leverage only the features in enhancers and promoters, or simply add the average genomic signals in the regions between
enhancers and promoters, without utilizing detailed features between or outside enhancers and promoters. Due to a lack of large-
scale features, existing methods could achieve only moderate performance, especially for predicting EPIs in different cell types. Here,
we present a Transformer-based model, TransEPI, for EPI prediction by capturing large genomic contexts. TransEPI was developed
based on EPI datasets derived from Hi-C or ChIA-PET data in six cell lines. To avoid over-fitting, we evaluated the TransEPI model by
testing it on independent test datasets where the cell line and chromosome are different from the training data. TransEPI not only
achieved consistent performance across the cross-validation and test datasets from different cell types but also outperformed the
state-of-the-art machine learning and deep learning models. In addition, we found that the improved performance of TransEPI was
attributed to the integration of large genomic contexts. Lastly, TransEPI was extended to study the non-coding mutations associated
with brain disorders or neural diseases, and we found that TransEPI was also useful for predicting the target genes of non-coding
mutations.
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Introduction
Enhancers are functional deoxyribonucleic acid (DNA)
fragments acting as cis-regulatory elements on the
genome, which regulate gene expression through the
interactions with the promoters of target genes [1, 2].
There are millions of fragments that have the potential to
act as enhancers in the mammalian genome, while their
activity varies greatly in different cell types [3]. Therefore,
the enhancer-promoter interactions (EPIs) are also cell
type-specific and play a critical role in cell development
and differentiation [2, 4]. EPIs may be disrupted by
genetic variations and lead to the dysfunction of genes
underlying the potential pathogenicity of mutations
occurring in non-coding regions [5, 6]. Accordingly, link-
ing enhancer mutations to the promoter of target genes
could help to interpret a substantial number of non-
coding mutations [7–9]. However, it remains challenging
to accurately identify EPIs because enhancers and their
target promoters are typically separated by thousands of
base pairs (bps) [4, 10].

Previous studies have utilized expression quantitative
trait loci (eQTL) to infer EPIs [11, 12], while eQTL map-

ping requires a large number of samples and eQTL-
identified EPIs are mostly short-range ones [13, 14]. Over
the last decade, chromatin conformation capture-based
(3C-based) techniques (e.g. Hi-C [15] and ChIA-PET [16])
have enabled the direct detection of long-range chro-
matin interactions, which could be applied to identify
EPIs [17]. However, high-resolution 3C-based experiments
are costly so that experimentally identified EPI data are
only available in a few cell types.

To mitigate the high cost of identifying EPIs, a variety
of computational methods have been proposed to predict
EPIs. Early studies attempted to decipher the determi-
nants of EPIs using the correlations of genomic signals at
enhancers and genes (or promoters) over a series of cell
types [18–20], while these methods were usually of low
performance because enhancers are usually cell-type-
specific and EPIs vary across cell types [21]. Subsequently,
machine learning (including deep learning models) mod-
els for EPI prediction have been proposed. Methods like
RIPPLE [22], TargetFinder [23], JEME [24], EPIP [25] and
EAGLE [26] employed genomic and epigenomic signals for
EPI prediction. Meanwhile, other groups built methods
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that use DNA sequences for EPI prediction, including
SPEID [27], Zhuang’s method [28], EPIVAN [29] and EPI-
DLMH [30]. However, these methods were mainly evalu-
ated on randomly split samples and thus may suffer from
inflated performance evaluation, as reported by several
studies [21, 31–33].

Recently, several methods that do not suffer from
the above issue have been proposed. 3DPredictor [34]
employs gene expression and CTCF-binding sites within
and around pairs of genomic loci to model Hi-C
contact maps for inferring EPIs. DeepC [35] and Akita
[36] present that deep convolutional neural networks
(CNNs) could efficiently predict Hi-C contact maps
using megabase-scale genome sequences. Another CNN-
based model, ChINN [37], takes a further step to predict
chromatin interactions at a genome-wide scale. Though
progress has been made, there is still much room for
improvement. First, DeepC and Akita benefit from the
features extracted from megabase-scale DNA sequences
using CNN. However, CNN is less efficient than recurrent
neural networks or the Transformer architecture [38]
in capturing long-range dependencies [39]. Given the
success of Transformer in modeling protein structure [40,
41] and predicting gene expression [42], it is promising
to apply Transformer to build EPI models. Second, in
contrast to DeepC and Akita, 3DPredictor compiles the
features within and around genomic loci in a relatively
coarse manner, and the ChINN model uses only the
DNA sequences from pairs of chromatin interaction
anchors (or open chromatin regions). They both lack fine
representations of the features from large-scale genomic
contexts. Since no direct comparison has been made
between these methods, it remains unclear whether
incorporating large genomic contexts could boost EPI
prediction.

In this study, we present a novel deep learning model,
entitled TransEPI, for EPI prediction using the Trans-
former architecture. TransEPI directly takes the input of
genomic signals from large genomic contexts harboring
the enhancer-promoter (E-P) pairs and employs Trans-
former encoders to capture the long-range dependencies.
To avoid over-fitting, we trained the model under the
cross-validation (CV) scheme, where the training data
were rigorously split by chromosomes [32, 33]. TransEPI
achieved a consistent performance across different cell
types and outperformed the state-of-the-art methods
on independent test datasets. Moreover, we confirmed
that the integration of large genomic context features
was critical for TransEPI to make predictions. Lastly, we
extended TransEPI to predict the target genes of muta-
tions associated with brain disorders or neural diseases
and found it could find a variety of distant target genes
which enrich neural function pathways. It implied the
potential ability of TransEPI for studying the pathogenic-
ity of non-coding mutations.

The codes and datasets are available at https://github.
com/biomed-AI/TransEPI.

Table 1. Summary of the dataset

Cell line Source Positive sample Negative sample

GM12878 Hi-C 2695 46 212
GM12878 CTCT ChIA-PET 4817 36 028
GM12878 RNAPII ChIA-PET 24 985 70 670
HeLa-S3 Hi-C 2256 21 086
HeLa-S3 CTCF ChIA-PET 1346 10 789
HeLa-S3 RNAPII ChIA-PET 744 2182
HMEC Hi-C 2286 20 019
IMR90 Hi-C 1468 13 268
K562 Hi-C 2765 73 299
NHEK Hi-C 1820 13 582

Methods
Datasets
The BENGI dataset

We employed the ‘Benchmark of candidate Enhancer-
Gene Interactions (BENGI)’ dataset [21] to develop
TransEPI for EPI prediction. BENGI is a collection of
enhancer-gene interactions from various biosamples,
which were identified by 3C-based or genetic (e.g.
eQTL and CRISPR/dCAS9 perturbations) approaches. The
positive samples were defined as the enhancer-gene
pairs identified by 3C-based or genetic experiments. The
negative samples were generated by pairing enhancers
with non-interacting genes within the 95th percentile of
the enhancer-gene distances of positive samples [21].
Since we aimed to predict the physical interactions
between enhancers and promoters, only the samples
identified by Hi-C and ChIA-PET were utilized.

We first mapped the genes in the BENGI dataset to
transcripts based on GENCODE annotation (v19) [43] to
convert the enhancer-gene pairs in BENGI to E-P pairs.
Here, the promoter was defined as the 1500 bp upstream
and the 500 bp downstream of a transcript start site
(TSS). Because the TSSs of some genes differ by more
than thousands of bps, the promoters in some E-P pairs
derived from positive samples may reside outside the
chromatin interaction anchors. These E-P pairs were then
excluded from our datasets. Besides, we removed the
samples (including positive and negative samples) with
low-expressed transcripts [transcript per million < 1] as
they were less likely to be regulated by enhancers. In this
way, we obtained 45 182 positive and 307 135 negative
samples in six cell lines, as listed in Table 1.

We combined the samples from GM12878 and HeLa-S3
to construct a dataset for developing the model, namely
BENGI-train, which contains 36 843 positive and 186 967
negative samples. The other datasets from four cell lines,
namely BENGI-HMEC, BENGI-IMR90, BENGI-K562 and
BENGI-NHEK, were reserved for independent tests.

Hi-C data from GSE63525

We collected the chromatin interactions identified by
Hi-C in a mouse and seven human cell lines from
Gene Expression Omnibus under the accession ID
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Figure 1. The TransEPI framework. (A) Feature preparation. Genomic features (CTCF, DNase I, H3K27me3, H3K4me1, H3K4me3, H3K36me3 and H3K9me3)
are extracted from large intervals harboring the candidate E-P pairs (enhancers are in yellow and promoters are in red). (B) The architecture of the
TransEPI. (⊗, matrix multiplying operation; MaxPool, max-pooling).

GSE63525 [17]. They were used to evaluate TransEPI
in a mouse cell line and extend the original model
for predicting non-coding variants in brain tissues. We
provided the details about the data in the Supplementary
Notes and Supplementary Table S1 available online at
http://bib.oxfordjournals.org/.

Input features
For each candidate E-P pair, TransEPI extracts genomic
features from a large genomic region of 2.5 Mbp that
centers on the E-P pair (Figure 1A). The reason for using
the size of 2.5 Mbp is that the maximum E-P distance
in BENGI is about 2 Mbp and we found that using
a size >2.5 Mbp could not improve the performance
(see Supplementary Notes for details). To represent the
chromatin states of the large region, a total of seven
types of genomic features were recruited, including
CTCF-binding sites, chromatin accessibility (DNase-I
signals) and five histone marks (H3K27me3, H3K36me3,
H3K4me1, H3K4me3 and H3K9me3; the ‘core marks’
in the Roadmap project [44]). TransEPI compiles these
genomic data for each 2.5 Mbp region as a multi-
dimensional (multi-channel) array, where each channel
corresponds to a genomic feature type. In this way, the
chromatin states of the entire 2.5 Mbp region could be
fed into TransEPI to make predictions. In practice, it is
infeasible for TransEPI to directly process signal arrays

of 2.5 Mbp due to the limitation of Graphics Processing
Unit’s memory. Meanwhile, the resolution of the genomic
data is typically 10s–1000s of bps. Thus, there is no need
to compile the features at bp resolution. Inspired by
Belokopytova et al. [34], we partitioned each 2.5 Mbp
region into 5000 consecutive bins with the bin size of
500 bp and averaged the genomic signals in each bin for
each feature, respectively. In addition, we need to mark
the location of the enhancer and promoter in each region.
To this end, we added an additional channel to each
input array, where the value in each bin is the shortest
distance from it to the enhancer or the promoter. The
technical details of feature preparation are provided in
Supplementary Notes.

The TransEPI model
The architecture of the TransEPI model is illustrated in
Figure 1B.

First, TransEPI utilizes a one-dimensional CNN to
extract features from the input signals. A max-pooling
layer is then used to down-sample the features and
shrink the length of each input sequence.

Next, TransEPI adopts a stack of multiple Transformer
encoders to capture the long-range dependencies. In
each Transformer encoder layer, the input sequence
X ∈ Rl×h is first transformed into a key, a query and a
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value sequence, respectively:

K = XWk, Q = XWq, V = XWv,

where Wk ∈ Rh×dk , Wq ∈ Rh×dk and Wv ∈ Rh×h are
learnable weights. K andQ are then used to obtain the
attention matrix A:

A = softmax

(
QKT√

dk

)
,

where the coefficient aij in A could be understood as
the association between the ith and the jth positions in
X. By multiplying V by A, the hidden states at different
positions are updated. We denote the output from the
Transformer module by M0 ∈ Rl×h.

Subsequently, a self-attention sequence embedding
method [45] is used to learn a low-dimensional repre-
sentation for M0. We first pass M0 to a two-layer fully
connected (FC) network:

As = softmax
(
Ws2 tanh

(
Ws1MT

0

))
,

where Ws1 ∈ Rs×h, Ws2 ∈ Rr×s, As ∈ Rr×l. Each row
in As sums up to 1, representing a group of attention
coefficients for the different positions in M0. We multiply
M0 by As and acquire a weighted embedding M1 ∈ Rr×h

(M1 = AsM0). Then, the average and the maximum values
along the second dimension of M1 are concatenated as
a low-dimensional embedding of M1. Additionally, we
concatenate the low-dimensional embedding with the
hidden states at the enhancer (he) and the promoter (hp)
bin to integrate both the global information of the whole
sequence and the local information of the enhancer and
the promoter:

M = AvgPool (M1) ‖ MaxPool (M1) ‖ he ‖ hp,

where M ∈ R4h.
Finally, the prediction could be made using a multi-

layer perception (MLP):

p = σ (MLP1 (M)) ,

whereσ represents the sigmoid function; p ranges from 0
to 1 (p ∈ (0, 1)), representing the probability that the input
enhancer and the promoter interact with each other. In
parallel, to make the model sensitive to the locations
of the enhancer and the promoter, we use a second
MLP module to predict the distance from enhancer to
promoter:

dpred = MLP2 (M) .

Evaluation metrics
We evaluated the model with the area under the
precision-recall (PR) curve (auPRC) and the area under

the receiver operating characteristic (ROC) curve [46]
(AUC). The PR curve is a plot of precision against recall at
a series of thresholds. Similarly, the ROC curve is a plot of
true-positive rate (TPR) against false-positive curve (FPR).
Precision, recall, TPR and FPR are defined as follows:

precision = TP
TP + FP

, recall = TP
TP + FN

,

TPR = TP
TP + FN

, FPR = FP
FP + TN

,

where TP, FP, TN and FN are short for the true positives,
false positives, true negatives and false negatives.

Since auPRC is associated with the proportion of posi-
tive samples in the dataset, we used auPRC-ratio (divid-
ing auPRC by that of a random predictor, which equals
the proportion of positive samples in the dataset [47]) as a
metric for comparing the performance of TransEPI across
different datasets.

Model training and evaluation
The TransEPI model is implemented with PyTorch (ver-
sion 1.9.0) [48] in Python 3.8. It was trained to minimize
a combined loss for EPI prediction (binary cross entropy
loss) and E-P distance (mean squared error loss) predic-
tion:

L
(
y, p, dpred, dtrue

) = LEPI
(
y, p

) + LEP−distance
(
dpred, dtrue

)
= − 1

N

N∑
i

[
yilog

(
pi

) + (
1 − yi

)
log

(
1 − pi

)]

+ 1
N

N∑
i

(
dpred,i − dtrue,i

)2,

where pi, yi, dpred,i and dtrue,i are the predicted EPI proba-
bility, true EPI label (0 or 1), the predicted E-P distance and
the real EP distance of the ith sample, respectively. The
Adam optimizer [49] is recruited to update the learnable
weights in the neural network (e.g. the parameters like
Wk, Wq and Wv in the model) using a learning rate of
0.0001.

To avoid over-fitting, we adopted a CV scheme to fine-
tune the hyper-parameters in TransEPI. We divided the
samples in BENGI-train into 5-fold by chromosomes
(chromosome-split CV), ensuring that the samples from
the same chromosome would also be put into the
same fold (chromosomes assigned to each fold are
listed in Supplementary Table S2 available online at
http://bib.oxfordjournals.org/). In each training epoch,
we trained the model on 4-fold and validated it on the
remaining fold in turn. The average AUC and auPRC over
the 5-fold were used to evaluate the performance. For
independent tests, we also split the test data by chromo-
somes to evaluate the models on data from different cell
types and chromosomes. The pipeline of model training
and evaluation is depicted in Supplementary Figure S1
available online at http://bib.oxfordjournals.org/.
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Figure 2. Evaluating TransEPI on independent test datasets. (A) The auPRC-ratio scores of TransEPI on BENGI-train (CV) and four independent tests.
The results on each fold and the combined dataset are shown. (B) The ratio of the EPIs shared by different cell types. The ratios are the numbers of
overlapping EPIs divided by the size of the datasets in the rows (bottom left) or the columns (top right). (C) The auPRC-ratio of TransEPI on the raw
test datasets or the test datasets with overlapping EPIs excluded. (D) The auPRC-ratio scores achieved by using TransEPI score or 1/EP-distance on the
samples stratified by EP-distance.

Extending TransEPI to predict target genes for
non-coding mutations
We further applied TransEPI to predict the target genes
of non-coding mutations. We collected 3943 non-coding
mutations associated with neural diseases or brain dis-
orders from Lu et al.’s work [14] (Supplementary Table S6
available online at http://bib.oxfordjournals.org/). How-
ever, only 198 out of the 3943 mutations were found in
the enhancers of human brain tissue (the annotation
was taken from the Enhancer Atlas 2.0 database [50]). To
make TransEPI compatible with the mutations outside
enhancers, we extended TransEPI by training it on the
Hi-C loop dataset (details in Supplementary Notes). We
reserved the samples in HMEC and HUVEC for validation
and test, respectively, and trained the model using the
other samples.

For each mutation, we paired it with the transcripts
within its 1 000 000 bp up- and downstream to curate
a list of candidate mutation-transcript pairs. We applied
TransEPI on the pairs in two human brain tissues and
three neural cell lines (Supplementary Table S3 available
online at http://bib.oxfordjournals.org/), respectively. The
mutation-transcript pairs with TransEPI-score above a
certain threshold were kept as interacting pairs. Here,
we set the threshold to 0.33 because the FPR on the test
dataset at this threshold is <0.05.

In addition, we use ‘top-1 score’ to denote the maxi-
mum TransEPI-predicted probability among all the can-
didate pairs for each mutation, which could reflect how
likely a mutation interacts with at least one target gene.

Results
TransEPI is capable of predicting EPIs in different
cell types
We first investigated whether TransEPI could predict
the EPIs in different cell lines in the BENGI datasets.
The TransEPI model was developed on BENGI-train
(GM12878 + HeLa-S3) and we thus evaluated it on
independent test datasets from four different cell lines
(HMEC, IMR90, K562 and NHEK).

We first compared the performance of TransEPI on the
CV and independent test datasets to investigate whether
it could achieve a consistent performance across differ-
ent cell types. As shown in Figure 2A, the auPRC-ratios
achieved by TransEPI on four independent test datasets
are 6.516, 5.847, 5.301 and 3.717, respectively, three out
of which are higher than that on the CV dataset (auPRC-
ratio = 4.278). Similar trends can also be observed on
almost all 5-fold. Since the overlap between different
datasets is <20% (Figure 2B), the consistent performance
across cell types can reflect TransEPI’s ability to predict
cell type-specific EPIs. In addition, we filtered the test
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Figure 3. The PRC of TransEPI and the other models on independent test datasets. (A) On BENGI-HMEC. (B) BENGI-IMR90. (C) BENGI-K562. (D) BENGI-
NHEK. (E) The PRC of TransEPI on ChINN’s distance-matched datasets. (F) On an EPI dataset in mouse CH12.LX cell line.

datasets by excluding the samples that were included
in BENGI-train. As shown in Figure 2C, excluding the
overlapping samples has almost no impact on the per-
formance of TransEPI.

Previous studies have found that the distance between
enhancer and promoter (EP-distance) may have strong
predictive power in some datasets [21, 26] (Supplemen-
tary Figure S2 available online at http://bib.oxfordjournal
s.org/). However, the predictive power of the EP-distance
is determined by the distribution of EP-distance in
the positive and the negative samples, which could be
manually controlled when constructing the datasets.
Hence, we further evaluated TransEPI on test samples
stratified by EP-distance to eliminate the potential
bias caused by EP-distance distribution. Specifically, we
merged the four independent test datasets and used a bin
size of 250 000 bp to stratify the samples into eight groups
(Figure 2D). In each group, the EP-distance is not informa-
tive for predicting EPIs, as the auPRC-ratio ranges from
0.7222 to 1.727 (a random model is expected to achieve
an auPRC-ratio of 1). In contrast, TransEPI achieves
much higher auPRC-ratios, which range from 1.125 to
9.036 (Figure 2D), demonstrating that TransEPI captures
the underlying determinants of EPI in addition to EP
distance.

Taken together, we could conclude that TransEPI is
capable of predicting cell type-specific EPIs.

TransEPI outperforms the other models on
independent test data
To further evaluate TransEPI, we compared it with Tar-
getFinder [23], SPEID [27], DeepTACT [51], 3DPredictor
[34] and ChINN [37] (Supplementary Table S4 available
online at http://bib.oxfordjournals.org/). For a fair com-
parison, we trained the methods (apart from ChINN) on
BENGI-train through the same chromosome-split 5-fold
CV scheme as our model. The comparison with ChINN
was made on ChINN’s dataset. There are other models
like DeepC [35] and Akita [36] for chromatin interaction
prediction, while they only predict the contacts within
1 Mb so that they are not suitable for comparison in our
study.

As shown in Figure 3A–D, TransEPI outperforms SPEID,
DeepTACT, TargetFinder and 3DPredictor on all the
four test datasets. The auPRC of TransEPI increases
by an average of 28.1% compared to the state-of-
the-art method 3DPredictor. Although the AUC of
TransEPI is lower than that of 3DPredictor on BENGI-
NHEK (Supplementary Figure S5 available online at
http://bib.oxfordjournals.org/), TransEPI achieves a
higher TPR than 3DPredictor when the FPR is close to
0. This means that TransEPI can detect more interacting
E-P pairs at a low FPR, which is helpful in practical use.
Another state-of-the-art method, ChINN, requires to use
DNA sequences of the entire chromatin anchors as input,
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Figure 4. Analyzing the contribution of large-scale features. (A) Using all the features or using features in the enhancer (in yellow), the promoter (red)
and the flanking regions (light blue). (B) The auPRC of TransEPI grows as the flanking size increases. (C) Masking the target (P1) or a randomly selected
promoter (P0) for the enhancer E. (D) The distribution of the change of TransEPI-scores in the mask-target group and mask-random group in four BENGI
test datasets. (∗∗∗: P-value < 1E-6, ∗∗: P-value < 1E-3, ∗ P-value < 0.05, by one-sided t-test).

which is quite distinct from the samples in BENGI. Hence,
we evaluated TransEPI on the datasets constructed by
ChINN. As shown in Figure 3E, TransEPI achieves the
auPRC of 0.8010, 0.6803, 0.7991, 0.7947 and 0.7512 on
the five ChINN datasets, respectively, outperforming
ChINN by an average of 28.7% (details in Supplementary
Notes and Supplementary Table S5 available online at
http://bib.oxfordjournals.org/) [37]. Compared with the
genomic feature-based model presented in ChINN’s
study, TransEPI still achieves a higher auPRC by an
average of 5.87%.

In addition, we applied the TransEPI model trained
on human cell lines to an EPI dataset in a mouse cell
line (CH12.LX). TransEPI achieved the auPRC and AUC
of 0.6743 and 0.9040 (Figure 3F and Supplementary
Figure S6 available online at http://bib.oxfordjournals.
org/), respectively, outperforming 3DPredictor and Tar-
getFinder. This implies that TransEPI has the potential to
predict EPIs in different species.

TransEPI benefits from the features outside
enhancers and promoters
The major difference between TransEPI and most of
the previous models is that it incorporates the genomic
features from large contexts. Hence, it is of interest to
explore how TransEPI can benefit from large-context
features, especially those from the genomic loci far from
the E-P pair.

To this end, we evaluated TransEPI using only the fea-
tures in E-P and their flanking regions within a custom
range (Figure 4A), and the features in the other regions

were masked by setting their values to 0. We tested a
series of flanking sizes from 1 kb to 500 kb, with training
and evaluating the models for each flanking size, respec-
tively. As shown in Figure 4B, a general trend is that the
auPRC of the model grows as the flanking size increases,
indicating that using large genomic contexts is beneficial
for TransEPI.

In addition, inspired by Xi and Beer [31], we particularly
wondered whether TransEPI could address the impact
from other regulatory elements which may also interact
with the E or P in the E-P pair. More specifically, can
TransEPI employ not only the status of a pair of enhancer
and promoter but also the potential contacts between
them and other regulatory elements to make a predic-
tion? To explore this hypothesis, we focus on the negative
samples in the datasets. For each negative sample, we
masked the target promoters of the enhancer (mask-
target) and the same number of randomly selected non-
interacting promoters (mask-random) of the enhancer,
respectively (Figure 4C). If the hypothesis holds, we would
observe a larger change of TransEPI-score induced by
mask-target than that by mask-random. Figure 4D dis-
plays the distribution of the change in TransEPI-score of
the negative samples in test datasets for the mask-target
and the mask-random group (only the samples with
TransEPI-score change >0.01 are shown. See Supplemen-
tary Notes for details). By one-sided t-test, we found the
change in TransEPI-score of the mask-target group was
significantly higher than that of the mask-random group
in the test datasets (the P-values are 1.05E-28, 2.22E-11,
1.00E-3 and 1.57E-5, respectively). It implies that when
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Figure 5. Applying TransEPI to find target genes for non-coding mutations. (A) The top-10 GO biological process (GO:BP) terms enriched by TransEPI-
predicted protein-coding genes for non-coding variants related to neural diseases or brain disorders. There are five GO terms associated with neural
functions in the top-10 GO:BP terms. (B) Comparison of the TransEPI-predicted top-1 scores of GWAS mutations and gnomAD mutations in the non-
coding (intronic + intergenic), the intronic and the intergenic group. Statistical significance was assessed by t-test.

the features of the loci interacting with the enhancer are
masked, the probability that the enhancer interacts with
the other promoters will likely be overestimated. The
observation is consistent with our hypothesis, potentially
explaining the improved performance of TransEPI.

Taken together, we could conclude that TransEPI ben-
efits from the genomic features outside enhancers and
promoters.

TransEPI facilitates identifying target genes of
non-coding mutations
Genome-wide association study (GWAS) has identified
a large number of risk mutations related to diseases.
However, most of the risk mutations reside in non-coding
regions so that it is hard to understand the mechanisms
of pathogenicity [8, 52]. One solution is to link non-coding
mutations to target genes through chromatin interac-
tions, while high-resolution 3D chromatin data are only
available in a few cell types. Hence, we extended TransEPI
to facilitate explaining GWAS results via predicting the
target genes of non-coding mutations.

We collected 3943 non-coding (intronic and intergenic)
mutations associated with neural diseases or brain dis-
orders from Lu et al.’s work [14] (Supplementary Table S6
available online at http://bib.oxfordjournals.org/). Using
TransEPI, we identified 5131 mutation-target gene pairs
between 3034 genes and 2571 mutations (Supplementary
Table S7 available online at http://bib.oxfordjournals.org/,
only protein-coding genes are included). As a case
study, we found that TransEPI correctly predicted
the target genes of two mutations that have been
validated by Hi-C [14]: rs10153620 (NRP2, TransEPI-
score = 0.9100) [53] and rs10457592 (POU3F2, TransEPI-
score = 0.9400) [54]. Next, we performed Gene Ontology
(GO) analysis on the predicted genes using g:Profiler
[55]. As shown in Supplementary Table S8 available
online at http://bib.oxfordjournals.org/, the target genes
significantly enrich 400 GO terms, including various
neural function-associated GO terms. Notably, 5 out

of the top-10 GO biological process (GO:BP) terms are
relevant to neural functions (Figure 5A).

The above analysis implies the TransEPI-predicted
genes may be functionally associated with neural
functions. However, the statistical significance cannot
be assessed since we lack the ground-truth target genes
for most mutations. To further evaluate the predictions,
we adopted an alternative approach by comparing the
predicted target genes of disease-related mutations to
those of disease-irrelevant mutations. We hypothesized
that the disease-related mutations were more likely to
interact with target genes than the disease-irrelevant
mutations. Accordingly, the top-1 scores of the disease-
related mutations should be higher than those of the
disease-irrelevant ones.

To this end, we randomly sampled 19715 (five times
that of GWAS mutations) non-coding mutations from
the gnomAD database (v2) as disease-irrelevant muta-
tions (Supplementary Table S9 available online at
http://bib.oxfordjournals.org/). As shown in Figure 5B,
the disease-related GWAS mutations have significantly
higher top-1 scores than the disease-irrelevant ones (P-
value = 9.33 × 10−5, by t-test). When we set apart the
intronic and intergenic mutations, we observed a more
significant difference in the intergenic group (P-value =
1.55 × 10−12), while no significant difference was found
in the intronic group (P-value = 0.0990). This is likely
because the intergenic mutations are more likely to
affect distal target genes than intronic mutations.

Taken together, we could conclude that the TransEPI
framework is also helpful to predict the target gene of
non-coding mutations and thus could potentially facili-
tate explaining GWAS results.

Discussion
In this study, we present a novel deep learning model,
TransEPI, for predicting EPIs by capturing large genomic
contexts using the Transformer architecture. Unlike
previous methods, we take the large genomic interval
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where the E-P pair locates into consideration. In this
way, TransEPI could address the impact of other distant
regulatory elements that may potentially interact with
the E or P [31].

Given the fact that the many EPI models suffer from
over-fitting [21, 31, 32], we trained and fine-tuned the
TransEPI model under the 5-fold CV scheme, where
the data were split by chromosomes to ensure that
the samples in different folds do not overlap. Besides,
we evaluated TransEPI on independent datasets derived
from four cell lines different from the training data. As
TransEPI achieves a consistent performance on the CV
and the independent test datasets, TransEPI is shown
robust for predicting EPIs in different cell types in the
BENGI datasets. Since TransEPI enabled accurate EPI
prediction, we extended the framework to find the
target genes of non-coding mutations. By applying the
model on mutations associated with neural diseases or
brain disorders, TransEPI found target genes that are
functionally associated with neural functions. Moreover,
these disease-associated non-coding mutations are
found to have a higher probability to act on target genes
than those irrelevant to diseases.

Although TransEPI has achieved state-of-the-art
performance, there is still much room for improvement.
For example, the time complexity and memory usage
required by the standard Transformer module are
quadratic to the length of the input sequence, which
are computationally expensive. It is infeasible for us to
process much larger genomic contexts in our model. In
the future, we may adopt more lightweight Transformer
architectures [56–58] to alleviate the problem. A recent
study on predicting gene expression using Trans-
former demonstrates that the attention weights in the
Transformer model may facilitate inferring chromatin
interactions [42]. Thus, we can investigate whether the
attention weights learned in TransEPI can provide more
biological implications in future studies. An attempt
to apply TransEPI to predict the enhancer-gene pairs
derived from CRISPRi perturbations [59] only achieved
relatively low performance (Supplementary Figure S7
available online at http://bib.oxfordjournals.org/). It is
likely because the Hi-C identified contacts and CRISPRi-
inferred enhancer-gene pairs are poorly overlapped [21].
The future versions of TransEPI could consider using
EPIs identified by the other 3C-based methods like
capture Hi-C [60] and HiChIP [61], or directly using the
enhancer-gene pairs identified by genetic approaches
(eQTL, CRISPRi perturbations, etc.). So far, we could
only test TransEPI on several cell lines with high-
quality chromatin interaction data. With genomic data
accumulating, we are expected to be able to evaluate
TransEPI in more tissues and cell lines in the future.

Data availability
The datasets and models are available at https://github.
com/biomed-AI/TransEPI.

Key Points

• We present a Transformer-based model,
TransEPI, using genomic data from large genomic
contexts to predict EPIs in different cell types.

• TransEPI compares favorably to state-of-the-art
methods on independent datasets from different
cell types and chromosomes.

• TransEPI largely benefits from the large-scale
context features outside enhancers and promot-
ers.

Supplementary Data
Supplementary data are available online at http://bib.o
xfordjournals.org/.
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