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Since the first proof-of-concept study of proteolysis-targeting 
chimeras (PROTACs) in 2001 (ref. 1), PROTACs have emerged 
as effective tools to selectively degrade disease-related proteins 

by using the ubiquitin-proteasome system. PROTACs contain three 
parts: a ligand (warhead) targeting the protein of interest (POI), 
a ligand that recruits an E3 ubiquitin ligase and a chemical linker 
that connects the two ligands1,2. Because of this hetero-bifunctional 
structure, PROTACs have the ability to simultaneously bind the POI 
and E3 ligase, forming a ternary complex and promoting polyubiq-
uitination and degradation of the POI3. Therefore, PROTACs only 
require transient binding to the target protein to induce ubiquiti-
nation and degradation4,5, which is different from conventional 
occupancy-driven inhibitors that need adequate binding affinity 
to druggable sites of target proteins. In addition, PROTACs are 
not limited to occupying druggable active sites and thus have the 
potential to utilize all surface binding sites of the target protein 
for modulating ‘non-druggable’ targets6,7. Accordingly, the ratio-
nal design of PROTACs is much more challenging than traditional 
small-molecule discovery.

The rational design of PROTACs can be divided into the design of 
three components. While the discovery of warheads and E3 ligands 
is not fundamentally different from the regular small-molecule 
discovery process, the design of linkers is experimentally challeng-
ing because the POI and E3 ligase do not interact without efficient 
PROTACs. Traditional methods have to design new PROTACs 
through extensive tests and trials8,9, which are extremely inef-
ficient. Many recent efforts have shifted the goalposts to de novo 
PROTAC design by generating linkers, because the linker is increas-
ingly known to be critical for the physicochemical properties and 
degradation activity of PROTACs10–12. Unfortunately, linker design 
remains a formidable challenge due to the structural complexity and 
dynamics of ternary structures. Another major challenge prevent-
ing PROTACs from realizing their therapeutic potential is that the 
designed molecules do not conform to the accepted drug proper-
ties associated with orally administered drugs13,14. The engineering 

of enhanced pharmacokinetics (PK) has proven to be challenging 
due to the large and flexible nature of PROTACs15. Thus, novel 
approaches are needed to increase the discovery rate of new func-
tional PROTACs.

On the basis of an intelligent exploration of chemical space, 
de novo molecular design has been greatly advanced by recent 
breakthroughs in deep generative models16,17. Various generative 
neural networks, such as recurrent neural networks18–21, trans-
former neural networks22,23, autoencoders24,25 and generative 
adversarial networks26,27, have proven to be effective for generating 
desirable small molecules28,29, peptides30 and antibodies31. These 
strategies have also been utilized to generate linkers for PROTACs. 
For example, Imrie et al.32 developed a graph-based deep genera-
tor (DeLinker), incorporating three-dimensional (3D) structural 
information directly into the design process. Meanwhile, Yang 
et al.33 transformed the linker design into a sentence completion 
task and introduced a language model (SyntaLinker) to generate 
novel linkers given simplified molecular-input line-entry system 
(SMILES) of hit fragments. Both methods demonstrate the gen-
eration of various linkers for de novo PROTAC design. However, 
these methods are limited to training on small molecules, without 
considering the differences in the design strategies and chemical 
space between small molecules and PROTACs. Additionally, they 
did not consider the drug metabolism and PK properties of the 
generated molecules. This is partly because of the extremely small 
amount of data publicly available for PROTAC. For example, the 
largest open-source PROTAC database currently contains only 
2,300 samples34, covering a tiny fraction of the chemical space. 
Considering such a small sample size, it is challenging to train 
a model that is capable of generating novel PROTACs simulta-
neously with desired properties and diversity, as also indicated 
in other studies in a low-resource setting22,35. More importantly, 
none of these previous generative models achieved experimental 
validation involving the synthesis of novel PROTACs for in vitro 
or in vivo testing.
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In this work, we have developed PROTAC-RL, a novel deep 
generative model that combines an augmented transformer36 
architecture and memory-assisted reinforcement learning (RL) for 
rational PROTAC design. The model takes a pair of E3 ligand and 
warhead as input and outputs designed linkers to generate chemi-
cally feasible PROTACs with favourable properties. To overcome 
the problem of the small amount of training data, we first pre-
trained a fragment linking model with a transformer neural net-
work using a large collection of quasi-PROTAC small molecules 
that have a chemical space similar to PROTACs, which is fine-tuned 
by using actual PROTACs augmented with randomized SMILES37 
of fragments. This trained Proformer model was then fed into a 
memory-assisted RL with empirical reward functions to gener-
ate PROTACs with better PK attributes. As a proof of concept, we 
selected the bromodomain-containing protein 4 (BRD4) target 
protein and generated 5,000 PROTACs, which were further clus-
tered and screened through hierarchical machine learning classi-
fiers and physics-driven molecular simulations. According to the 
synthetic accessibility, we synthesized and experimentally tested 
six BRD4-degrading PROTACs, of which three showed inhibi-
tory activity against BRD4. One lead candidate simultaneously 
showed high anti-proliferative potency against the Molt4 cell line 
and favourable PK in mice (Fig. 1). This rapid discovery (within 
49 days) highlights the significant impact that the combination of 
deep learning and molecular dynamics can have to facilitate effi-
cient PROTAC design and optimization.

Results
Overview of PROTAC-RL. For a given pair of warhead and E3 
ligands, rational PROTAC design requires sampling the vast chemi-
cal space to generate chemically feasible PROTAC molecules simul-
taneously with preferred PK properties. To achieve these two aims, 
our method couples two corresponding modules, namely a ‘prior’ 
network (Proformer) that is responsible for sampling the PROTAC 

chemical space and an ‘agent’ network (PROTAC-RL) that navigates 
the prior model towards desirable properties. For the first task, we 
formulate the problem as a sentence completion process, where the 
input is the pair of warheads and E3 ligands and the outputs are the 
designed PROTACs. Both the inputs and outputs are represented 
in molecular SMILES notations. The basic prior generating model, 
Proformer, was developed based on transformer neural networks 
because of their superior performance in molecular modelling 
(Supplementary Fig. 1). Owing to the small number of PROTAC 
molecules available (<2,300, namely PROTAC-DB34), we trained a 
basic model from a culled set of 294,675 quasi-PROTAC small mol-
ecules (a similar size to PROTAC) and fine-tuned the model on the 
real PROTAC set. We also improved the fine-tuning performance 
by augmenting PROTACs with randomized SMILES strings37. For 
the second task, we fed the Proformer into a reinforced learning 
framework (PROTAC-RL) to navigate the sampling of molecules 
with desirable properties. The reinforced learning strategy was 
selected because property functions were usually complicated and 
non-differentiable.

Proformer enables general PROTAC generation. To evaluate our 
method, we followed previous fragment-linking works32,33 to divide 
the PROTAC dataset into three sets with a ratio of 8:1:1 for training, 
validating and testing, respectively. For each testing pair of warhead 
and E3 ligand, the top ten candidates were generated and the per-
centage of ground-truth linkers generated among the compounds 
in the test set (that is, the recovery rate) was used to evaluate the 
performance. We compared Proformer with other state-of-the-art 
fragment-linking methods, including a graph-based method called 
Delinker26, a language-based method called SyntaLinker27 and their 
versions retrained on the PROTAC training set. As shown in Fig. 
2a, Proformer achieved the highest recovery rate of 43.0 ± 1.8%, 
significantly higher than those achieved by Delinker (0.6 ± 0.6%) 
and SyntaLinker (0.6 ± 0%). These low recoveries by the original 
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Fig. 1 | Approach overview. a, Overview and time line of the proposed artificial intelligence (AI)-driven approach for accelerated PROTAC design. b, The 
general work flow for the design of lead PROTACs using PROTAC-RL. CADD, computer-aided drug discovery.
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Delinker and SyntaLinker models suggest that models trained on 
small molecules cannot reproduce the chemical space of PROTACs. 
The projection of the generated molecules (Fig. 2b) indicates that 
Proformer covered a similar space to the real PROTACs (ground 

truth), while baseline models are biased. After retraining Delinker 
and SyntaLinker using the PROTAC training datasets, their recov-
ery rates increased sharply to 4.8% and 10.4%, respectively, but 
remained much lower than that achieved by our method (43.0%). 
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Fig. 2 | Performance of PROTAC-RL. a, Performance comparison of state-of-the-art fragment-linking models. Data presented as mean values. Error bars 
indicate s.d. (n!=!3 independent runs). b, t-Distributed stochastic neighbour embedding (t-SNE) of ground-truth PROTACs in the test set and PROTACs 
generated using different models. c, Performance comparison of generative models with different training strategies in terms of validity, uniqueness, novelty 
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target PK score of 14, 16, 18, 20 or 22. The lower the PK score, the better. f, The evolution of the generated structures as the PK reward is increased.
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This difference could result from the advance represented by our 
proposed model, since the removal of the SMILES augmentation 
component caused a decrease of 12.7% in the recovery rate and 
further removal of the pretraining component caused a decrease 
of 19.9% (Fig. 2c). In general, the superior performance of our 
model resulted from a balanced performance in terms of valid-
ity, uniqueness and novelty when compared with other methods 
(Supplementary Table 1).

RL enables conditional PROTAC generation. Another challenge 
in PROTAC development is the poor PK properties of the designed 
molecules. To achieve the desired PK scores (Methods), we employed 
the RL strategy, and introduced the memory experience mechanism38 
and repeat score penalty39 to alleviate the collapse problem during 
RL. We used an empirical PK objective function (the lower the bet-
ter, see Supplementary Methods) and aimed to decrease the average 
PK score from 25.6 to 14.0, a reasonable PK value for PROTAC mol-
ecules. Since our RL is not strongly dependent on specific PROTAC 
molecules, we randomly selected ten pairs of warheads and E3 
ligands from the PROTAC test set. The top 100 candidates per pair 
were generated after 2,000 steps of RL. The output PROTAC mol-
ecules are considered to be successful if they are close to (±2.0) the 
expected target score. As shown in Fig. 2d, the PROTAC-RL agent 
model generated molecules with an average PK score of 14.5, with 
an average punished success rate (percentage of successfully gener-
ated unique compounds) of 75.5%. These high success rates result 
from the synergy of four modules (pretraining, augmentation, 
memory experience and penalty), while the removal of any module 
would cause a notable decrease in the success rate. Removal of the 
pretraining module decreased the performance of the model by five 
fold (15.0%), probably because the model trained solely on the small 
training set did not contain enough unique molecules. This reaffirms 
the importance of pretraining for learning in low-resource scenarios. 
Similarly, the removal of the penalty or memory experience module 
decreased the punished success rate to 37.2% and 39.5%, respectively, 
probably because the modules incremented the global searching abil-
ity to avoid becoming trapped in local minima.

As an example, we selected a pair of warhead (BI-7273, targeting 
BRD7) and E3 ligand (CRBN (Cereblon) recruiter, thalidomide), 
and aimed to generate PK scores of around 22, 20, 18, 16 and 14. 
We did not minimize the PK score since a low PK score tends to 
produce short linkers that are less likely to form appropriate ternary 
complex structures. The different thresholds were selected to retain 
a diversity of generated compounds. As shown in Fig. 2e, at these 
five thresholds, our sampled compounds were mostly distributed 
around the expected PK scores (±2.0) with percentages of 97.4%, 
94.2%, 88.8%, 95.2% and 95.4%, respectively. In contrast, the prior 
model sampled only <0.5% of compounds with PK scores <18. The 
trends were similar for the other nine selected pairs (Supplementary 
Fig. 2). Figure 2f illustrates the evolution of the generated structures 
along the model RL. The structures become more complex, with 
increasing numbers of rings and substituents.

To further evaluate the generalizability of our RL-based archi-
tecture, we also used octanol–water partition coefficient (log P) and 
linker length as the reward functions (Supplementary Figs. 3 and 4, 
respectively), again proving that PROTAC-RL was able to guide the 
prior to generate molecules with desired properties.

In silico PROTAC virtual screening against BRD4. To further 
indicate our method, we selected BRD4 as a case study because it 
has emerged as an attractive target for anti-cancer therapy while no 
clinical PROTAC molecules have been reported40. Although Winter 
et al.41 developed a BRD4 PROTAC degrader (dBET6) using a bro-
modomain inhibitor JQ1 (PubChem 46907787) and recruitment of 
the E3 ubiquitin ligase CRBN (UniProt Q96SW2), this compound 
faces problems in terms of permeability and PK (with a PK score of 

22.24). Here, we aimed to obtain BRD4 substitutes with better PK 
by launching the RL stage with PK score targets of 20, 18, 16, 14 and 
12. We limited the analysis to linkers containing 2–16 atoms since 
Nowak et al. found this length to be optimal for BRD4 PROTAC 
activity10. During RL, we saved a model every 250 steps between 
the 1,000th and 2,000th steps and used each of the four models to 
generate 250 linkers. Finally, we obtained a total of 5,000 PROTACs, 
containing 4,860 valid SMILEs strings and 2,894 unique ones.

As no standardized protocol exists for screening PROTAC can-
didates, we designed a comprehensive screening strategy to narrow 
down the molecules (Fig. 3a). First, to ensure the novelty of the gener-
ated PROTACs, we removed molecules with Tanimoto similarity of 
the Extended-Connectivity Fingerprints (ECFP) fingerprint42 above 
0.6 to any BRD4 PROTAC in the training set (2,645 molecules left), 
and further filtered the PROTACs containing unfavourable substruc-
tures in the Pan-assay interference compounds (PAINS)43 filters (1,992 
molecules left). Then, the remaining PROTACs were clustered accord-
ing to their Tanimoto similarity using the Butina algorithm44, obtain-
ing 78 clusters. The average internal Tanimoto similarity of these 1,992 
PROTAC linkers is 0.184, indicating that they are not similar to each 
other. At the same time, we scored all molecules through a PROTAC 
degradation activity predictor, which was trained on the DC50 (the 
concentration at which 50% of the target protein has been degraded) 
and degradation percentage data according to the ensemble of four 
heterogeneous machine learning models, achieving a three-fold area 
under the receiver operating characteristic curve of 0.945, 0.938 and 
0.936, respectively (Fig. 3b; see Supplementary Information for the 
detailed implementation). Note that the predictor may not general-
ize well owing to the small number of training samples. Hence, we 
only used the predictor to filter low-scored molecules, and designed 
a hierarchical strategy (detailed in the Supplementary Information) 
to maintain the diversity and high scores (Fig. 3c). The remaining 51 
candidates have a better distribution of PK properties (lower PK score) 
than the originally generated PROTACs (Fig. 3d).

For the selected 51 candidates, we modelled PROTAC-mediated 
ternary complexes by combining the PRosettaC protocol45 with 
molecular dynamics modelling (Methods). We observed that the 
calculated Rosetta scores and Molecular mechanics with gener-
alised Born and surface area solvation (MM/GBSA) scores for five 
known BRD4 PROTACs did not always agree (Fig. 3e). Among the 
selected candidates, 34 showed better Rosetta scores while 3 showed 
better MM-GBSA scores than dBET6 (Fig. 3f), and the union set 
of the two resulted in 36 PROTACs. According to their synthetic 
accessibility, we selected six candidates for experimental validation. 
The projection of all generated PROTACs and active PROTACs 
(Fig. 3g) revealed that the six selected compounds are structurally 
diverse and show low similarity to known active PROTACs.

Wet laboratory characterization. After in silico screening, we iden-
tified six lead candidates, and by day 39, these molecules had been 
successfully synthesized (Fig. 4a–c and Supplementary Fig. 5). We 
first conducted a primary screening to assess the protein degradation 
ability on the HEK293T cell line by western blot assay. As shown in 
Fig. 4d–f, compounds 1–3 showed activity for the reduction of BRD4 
protein. Specifically, compound 1 down-regulated the BRD4 level at 
a concentration of 100 nM, while compounds 2 and 3 induced BRD4 
degradation at 300 nM. Compounds 4–6 did not show obvious deg-
radation activity (Supplementary Fig. 5). We next selected com-
pounds 1–3 to examine the in vitro anti-proliferative effect against 
Molt4 cells. As shown in Fig. 4g–i, these compounds showed differ-
ent degrees of anti-proliferative activity against the Molt4 cell line, 
with compounds 1, 2 and 3 showing the concentration of an inhibitor 
needed to inhibit a biological process or response by 50% (IC50) val-
ues of 116 nM, 5.1 μM and 21 μM, respectively. Apart from activity, 
in vitro inhibition of the human ether-a-go-go-related gene (hERG) 
channel has been used as an important assay to assess the potential 
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cardiotoxicity of drug molecules. We evaluated compound 1 for its 
inhibition of the hERG channel and found a low hERG inhibition of 
27.4 μM (Supplementary Fig. 7), which proves that compound 1 is a 
strong candidate for further development. Moreover, compound 1 
showed favourable physicochemical properties, with water solubility 
Log S of 1.42 and distribution co-efficient (Log D) of 3.27.

Because PROTAC-RL is mainly employed to optimize the PK 
properties of PROTACs, we further tested compound 1 in a rodent 
model, where compound 1 was delivered to mice intraperitoneally 
at 2 mg kg−1. The three administrations resulted in a similar half-life 
of ~2.22 h (Fig. 4j). Intraperitoneal administration conferred a peak 
plasma concentration (Cmax) of 194 ng mL−1 on initial delivery, which 
peaked at 0.5 h after delivery. This is much better than the reference 
compound dBET6, with a Cmax of only 176 ng mL−1 and half-life of 
0.52 h. These results distinctly highlight compound 1 as a potent 
BRD4 degrader with favourable PK. A summary of the properties of 
compound 1 is provided in Supplementary Table 6.

Structural and mechanism analyses. To understand the mechanis-
tic basis of the degradation, we further compared the ternary com-
plexes between dBET6 and compound 1. As shown in Fig. 5a–c, 

compound 1 maintained the same major interactions as dBET6, 
including two crucial hydrogen bonds between the triazole in 
the BET warhead and BRD4 CYS470 and ASN474, as well as the 
hydrogen bonds between the glutarimide in the CRBN binder and 
the CRBN HIS326 and SER327 backbone. This demonstrates that 
compound 1 could maintain a similar binding mode to the refer-
ence compound. Note that compound 4 showed a similar binding 
mode to the reference and a better predicted degradation activity 
(according to both the GBSA and pRosettaC values) but without 
obvious degradation activity. To interpret the potential reasons 
for this, we performed steered molecular dynamics simulations to 
evaluate the stability of the PROTAC-mediated ternary complexes 
for compounds 1 and 4. Interestingly, the complex formulated by 
compound 1 was shown to be more stable than that by compound 
4 (Fig. 5d), which probably explains why compound 4 did not show 
bioactivity in wet experiments.

Discussion
We report herein a fully automated computational framework that 
combines conditional generative modelling, machine learning and 
physics-driven learning for rational de novo design of PROTACs, 
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and experimentally validated these PROTACs for favourable 
anti-cancer efficacy and PK. The discovered PROTACs show high 
degradation activity against BRD4, a gene that is overexpressed 
in different human cancers. Wet laboratory results confirmed the 
efficiency of the proposed approach for designing new and opti-
mized PROTACs with a very modest number of candidate com-
pounds synthesized and tested. The present design approach in 
this proof-of-concept study yielded a 50% success rate and a rapid 
turnaround of 49 days, highlighting the importance of combining 
artificial intelligence-driven computational strategies with experi-
ments to achieve more-effective drug candidates.

As the proposed model PROTAC-RL is a generic method, it is 
suitable for a wide range of conditional generation tasks and can 
handle multiple objective functions simultaneously. Thus, future 
directions of this research will explore the effect of additional rele-
vant constraints, such as the cell permeation ability or oral bioavail-
ability, on the designed PROTACs using the approach presented 
herein.

There are also several potential limitations of PROTAC-RL 
under the current framework. First, as an RL approach, the design 
of the reward function is crucial to the outputs. However, as there 
are not enough experimental data for PROTAC property predic-
tion, the choice of robust predictor would be limited. One option 
is to use some semi-experienced scoring functions, as shown in 
this study. Another alternative is to apply a docking scoring func-
tion to guide the model to generate potential candidates. Secondly, 
current ternary complex modelling still relies on physics-driven 
simulations. As our results show, the best results obtained by dock-
ing are not necessarily active, and steered molecular dynamics was 
proven to be helpful. The requirement for extensive modelling 
simulations may be facilitated by the rapid development of super-
computers. Another alternative worth trying would be to use recent 
deep learning-based binding prediction methods46,47. Third, attach-
ment sites fundamentally affect the degradation and selectivity12. 
PROTAC-RL currently follows the settings of previous methods 
that predefine the attachment sites according to prior bioactivity 

data. When crystal structures are available, the solvent-exposed 
positions identified from those high-resolution co-crystal struc-
tures could be determined as attachment sites48,49. Otherwise, suit-
able attachment points may be identified by discovering data for 
the structure–activity relationship and combining the inspection of 
explainable artificial intelligence50 and molecular dynamics simula-
tions. Finally, advances in protein structure prediction and protein–
protein interaction prediction may enable more accurate modelling 
of ternary complex structures51,52.

Overall, our results suggest that the time is ripe for the application 
of modern deep learning approaches to PROTAC discovery. Such 
efforts could increase the rate at which new molecular entities are 
discovered, decrease the resources required to identify these mole-
cules and decrease the associated costs. We believe that the strategies 
described in our work will inspire future PROTAC design works.

Methods
Datasets. PROTAC dataset. We obtained PROTAC molecules from PROTAC-DB34, 
a public, web-accessible database. It collects 1,656 PROTACs from literature and 
patents, each consisting of a fragment molecule triplet (FMT; warhead, linker 
and E3 ligand). !e dataset included 202 unique warheads, 65 E3 ligands and 806 
linkers. !e PROTACs were randomly divided into three parts in a ratio of 8:1:1 for 
training, validating and testing, respectively.

As Arús-Pous et al.37 indicated that training models with randomized SMILES 
are generalized to a larger chemical space, we adopted the same approach to 
augment each FMT (corresponding to the warhead, linker and E3 ligand triplet) 
in the training set to five FMTs, where one was original, one FMT was a simple 
exchange of warhead and the E3 ligand with a corresponding change of the linker 
and three FMTs corresponded to randomized SMILES for both input and output. 
After this augmentation, the training set was expanded to 6,630 FMTs.

ZINC quasi-PROTAC dataset. Because of the small number of PROTAC molecules 
available, we culled molecules with similar properties from the ZINC53 dataset 
(https://pubs.acs.org/doi/10.1021/acs.jcim.5b00559) for pretraining our model. 
We selected molecules with molecular weight greater than 500 and further filtered 
them based on PROTAC properties reported in ref. 54. Then, each molecule was 
first cut into three parts using the matched molecular pairs cutting algorithm as 
proposed by Hussain et al.55. Briefly, the algorithm first enumerates all double cuts 
of nonfunctional groups and acyclic single bonds and transforms each compound 
into FMTs. The FMTs were then filtered according to PROTAC warhead, E3 ligand 
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and linker properties, including the molecular weight, the number of carbon atoms, 
the number of aromatic rings (NAR), the number of donor atoms for H-bonds, 
the number of acceptor atoms for H-bonds, Kier’s flexibility index and the 
topological polar surface area. Full details of the property filters are provided in the 
Supplementary Information. Since one molecule might generate multiple fragment 
triplets, we only kept triplets with the longest linker. Finally, 294,675 unique triplets 
remained. By using the same augmentation strategy, the training dataset was 
expanded to 1,178,685 FMTs, namely the ZINC quasi-PROTAC dataset.

PROTAC-RL framework. To generate PROTACs with a given pair of warhead and 
E3 ligands, we have proposed an RL-based framework. The method consists of two 
modules: the Proformer module to generate valid, diverse and novel PROTACs and 
the RL module to navigate PROTACs with desirable properties.

Proformer architecture. As SyntaLinker using SMILES representation was shown 
to outperform DeLinker using the topological graph, we followed SyntaLinker 
to input with molecule SMILES. The PROTAC generation was formulated as a 
sentence completion process, where the input is the SMILES of the warhead and E3 
ligands and the output is the SMILES of PROTACs. The fundamental architecture 
of Proformer is a transformer neural network (Supplementary Fig. 1) which 
contains multiple encoder–decoder modules36. Each encoder layer comprises a 
multi-head self-attention sub-layer and a position-wise feed-forward network 
sub-layer. In multi-head attention, several scaled dot-product attention functions 
work in parallel, allowing the model to concentrate on information from different 
subspaces at different positions. An attention function computes the dot products 
of the query (Q) with all keys (K), introducing a scaling factor dk (equal to the size 
of the weight matrices) to avoid excessive dot products, and then applies a softmax 
function to the weights on the values (V). Formally,

Attention (Q,K,V) = softmax

(
QK

ᵀ

√
d

k

)
V (1)

Where ⊺ indcates transposition. The feed-forward network sub-layer is 
activated by the Rectified Linear Unit (ReLU) function56. Then, two sub-layers 
above were linked by layer normalization57 and a residual connection58. Each 
decoder layer consists of three sub-layers, including a feed-forward network 
sub-layer and two attention sub-layers. One decoder attention layer is the 
self-attention sub-layer, and to hinder attending to unseen future tokens, a mask 
function is utilized in this layer. The other is the encoder–decoder attention layer. 
It helps the decoder to capture the relationship between the encoder and decoder 
and to concentrate on crucial parts in the source sequence.

For a given source sequence (the SMILES of the pair of warhead and E3 
ligand), its input is processed by one-hot encoding, followed by embedding into a 
latent representation H. Given H, the decoder output is then normalized with a 
softmax function, yielding a probability distribution for sampling tokens, iteratively 
generating an output sequence (SMILES of PROTAC) Y = (y

1

, …, y

m

) until the 
ending token ‘</s>’ is occurred. During the training stage, the goal of the model is 
to minimize the cross-entropy loss L between the target sequence M

t

= (t
1

, …, t

k

) 
and the output sequence Y:

L (Y,M) = −

k∑

i=1

y

i

log t

i

(2)

RL. By using Proformer as the prior model, we navigate the generating PROTACs 
with desired properties through a Markov decision process, where the agent 
must decide which SMILES character to choose at the current state to maximize 
the target reward function. Similar to the work of Olivecrona et al.59, we utilized 
the probability distributions learned by the prior model as our initial policy. The 
generation task is finitely episodic. Given a source sentence x = (x

1

, x

2

, …, x

n

), 
with the Transformer network processing, the decoder finally samples a sentence 
Ŷ = (Y

1

,Y
2

, …,Y
m

) of word tokens and ends when the ‘EOS’ token is sampled. 
As the episode has been determined, four basic elements in the RL can be 
recognized: the actions A = (a

1

, a

2

, …, a

m

) represent the SMILES token sampled 
from the dictionary, the states S = (s

1

, s

2

, …, s

m

) are the hidden states which 
encode the information of the input SMILES and tokens that have been sampled 
before, the policy π can be represented by a model distribution of sampling 
learned from data, and the reward R is calculated by a given scoring function after 
the whole sequence has been sampled. The product of the action probabilities 
represents the model likelihood of the sequence, where T = steps, formed as

P (A) =
T∏

t=1

π (a
t

|x) . (3)

Once the agent generates a complete sequence Ŷ , a terminal reward R
(
Ŷ

)
 is 

calculated by scoring functions as

R

(
Ŷ

)
=





max

(
0, 1 − 1

α

abs

(
f

(
Ŷ

)
− Target

))
, if valid;

0, if invalid.

(4)

where α is a parameter and f
(
Ŷ

)
 is changeable for each task such as calculating 

the linker length, log P and the PK score. For rating the desirability of the 
sequences, max methods are used to make R

(
Ŷ

)
∈ [0, 1]. Note that the reward 

R

(
Ŷ

)
 here is a sentence-level reward. So, the goal now is to upgrade the agent 

policy π in such a way as to increase the expected score for the generated sequences. 
To keep the learned syntax of SMILES and the distribution of molecular structure 
in previous datasets, we would like to anchor our new policy to the prior policy. 
We therefore introduce an augmented likelihood log P (A)

U
 as a sum with prior 

likelihood and modulated reward of a sequence:

log P (A)
U
= log P (A)

Prior

+ σR (Y) , (5)

where σ is a scalar coefficient. As the goal of the agent is to learn a policy that 
maximizes the expected return while anchoring to prior policy, we achieved this by 
minimizing the cost function J (Θ) = −G.

G (A) = −
[
log P (A)

U
− log P (A)

A

]
2

, (6)

which measures the squared difference of the current agent’s likelihood over a set of 
actions A, log P (A)

A
, and the augmented likelihood.

To increase the diversity of the sampled molecules, the score of each generated 
molecule Ŷ

i

 was weighted by assigning a weight of 1∑
Ŷ

i

, where 
∑

Ŷ
i

 is the number 
of repeating molecules Ŷ

i

. Experience replay38,59 was introduced to lead the training 
process. For each generation batch, a certain number of memories were sampled 
from the experience buffer with the normalized score as a probability distribution, 
joining the backward of each step.

Transfer learning for low-resource training. Due to the small number of 
PROTAC molecules, we trained the Proformer model on the ZINC quasi-PROTAC 
dataset with a chemical space similar to the PROTAC dataset, then fine-tuned the 
model on the PROTAC dataset. This strategy, also known as transfer learning18,60, 
can allow the model to explore a broader chemical space to learn the SMILES 
syntax and the relation between input and output, such as the linking site and 
generated linker, assisting our model to generate more valid and diverse PROTACs. 
At the same time, the fine-tuning on the real PROTAC molecules guides the 
learned distribution to the real PROTAC chemical space.

Evaluation metrics. We assessed the generated molecules by using a range of 
metrics:32,33

•	 Recovery means the percentage of ground truth generated among test-set 
compounds.

•	 Validity refers to the percentage of generated chemically valid molecules with 
the input of fragments.

•	 Uniqueness is the average percentage of unique linkers in generation for each 
pair of fragments.

•	 Novelty is the percentage of generated validly unique PROTACs with novel 
linkers (not present in the training set).

Reward functions. We defined three reward functions, that is, linker length, log P 
and PK score, from easy to hard.

Linker length is one of the most important properties involved in PROTAC 
selectivity, the ability to cross the plasma membrane and metabolism10,48,61,62. In 
real-world PROTAC design, drug chemists would first determine the optimal 
linker length and design linkers according to the goal8. To mimic this process and 
generate linkers of any specific length, the scoring function was defined as

S

length

(X) =

{
max

(
0, 1 − 1

α

abs (LinkerLen (X) − Target)
)
, if valid;

0, if invalid.

(7)

α denotes a changeable parameter. ‘Target’ is a user-predefined targeted linker 
length.

Log P is a basic physicochemical property for PROTACs. A low log P will limit 
the utility of in vitro data for establishing in vitro–in vivo correlations for the key 
drivers of achieving acceptable oral PK63. We defined the scoring function as

S

log P

(X) =

{
max

(
0, 1 − 1

α

abs (log P (X) − Target)
)
, if valid;

0, if invalid.

(8)

PK score. PROTACs often have molecular weight above 700 and exhibit other 
violations of the Lipinski RO564 and/or Veber’s rotatable bond/polar surface 
area rules65, in a chemical space lying beyond traditional drugs. DeGoey et al.66 
described a composite AbbVie multiparametric score (AB-MPS) metric to calculate 
oral absorption via calculated LogP (CLog P), the number of aromatic rings and the 
number of rotatable bonds (NRotB). The formula was defined as

PK (X) = AB-MPS = abs (log P (X) − 3) + NAR + NRotB. (9)
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The lower the AB-MPS score, the more likely the compound is to be absorbed, 
and a value of ≤14 is reported to predict a higher probability of oral absorption13. 
However, a large gap in the AB-MPS of PROTACs sharing the same warhead and 
E3 ligand pair often results in a great difference in linker length and affects the 
PROTAC activity. To minimize the effect on PROTAC activity, we designed a PK 
scoring function with the target AB-MPS value as follows:

S

PK

(X) =

{
max

(
0, 1 − 1

α

abs (PK (X) − Target)
)
, if valid;

0, if invalid.

(10)

where α is a changeable parameter. Because the AB-MPS formulation includes 
calculations of log P and the number of rotatable bonds, the PK optimization 
task can also be treated as a multi-objective optimization task. ‘Target’ is a 
user-predefined targeted AB-MPS score.

Molecular simulations. Since the generated PROTACs do not explicitly consider 
the ternary complexes with the target ligase and protein of interest, we followed 
the modelling protocol of PRosettaC45. In particular, we first downloaded the 
tertiary complex structure from the Protein Data Bank (ID: 6BOY) as a reference. 
From the complex structure, we removed the PROTAC linker fragment and 
divided the complex into two parts: the E3 ligase bound with the E3 ligand and 
the target protein with the warhead. To build candidate complex structures with 
different linkers, we first constructed complex models by protein–protein global 
docking using PatchDock67, with a distance constraint between the binding pockets 
of the two ligands. The distance constraint range was determined according 
to the distribution of distances between two termini of the generated linker 
conformations (200 in our case). For each linker from this step, 500 complex 
models were generated. Then, each of the docked complex models was further 
refined through Rosetta protein–protein local docking and a relaxed protocol to 
generate ten refined models. For each refined complex model, the missing linker 
fragment was sampled between the fixed ligands to generate 100 conformations. 
All the generated conformations were clustered by using the DBSCAN method 
based on the pairwise r.m.s.d. of each two models, where the cutoff was set to 4 Å. 
From the largest cluster, the complex models were scored by using the Rosetta 
packing protocol, and the conformations with the best Rosetta score were selected 
for further simulations.

As the Rosetta score was indicated to be not strongly correlated with the 
protein degradation ability in previous studies45, we further performed molecular 
dynamics (MD) simulations to capture the movement of mediated ternary 
complexes. For each generated PROTAC model, we performed three parallel MD 
simulations with different assigned initial velocities. Each MD simulation run 
for 50 ns and the last 10 ns (200 conformations) were extracted to calculate the 
MM-GBSA energy (after removing all water molecules). The 200 energy values 
were averaged to obtain the final binding affinity. The MD study was conducted 
by using DESMOND (Schrodinger release 2021-1). For each MD simulation, 
the mediated ternary complex is first prepared with the Optimized Potentials 
for Liquid Simulations 4 force field and solvated in the orthorhombic simple 
point-charge water box. The NPT ensemble at 300 K and 1.01325 bar was used in 
the production run. The time step is 2 fs, and the recording interval is set to 50 ps 
for trajectories and 1.2 ps for energy. All other parameters are set as default. The 
GBSA calculations were performed using the Schrodinger Thermal MM-GBSA 
tool.

To compare the stabilities of different PROTAC–protein complexes, we carried 
out steered MD simulations using Gromacs 2020.6. Enhanced sampling methods 
were supported by PLUMED-2.7.2. Only one collective variable centre-of-mass 
distance (Dcom) between proteins was set. With a force constant (K = 1,000 pN) 
along Dcom, the bounded proteins were pulled from the natural length of the 
native structure to a separated state of 6 nm in 4 ns. For each complex, ten rounds 
of pulling experiments were applied.

Cell viability assay. Cell growth inhibition studies were performed at ChemPartner 
(Shanghai). The Molt4 cell line was seeded in 96-well plates at a density of 2 × 104 
cells per well and treated continuously with different concentrations of compounds 
1–3. Cells were incubated with compounds for 72 h at 37 °C under 5% CO2. 
Anti-proliferative effects were then assessed by using the CellTiter-Glo luminescent 
cell viability assay (Promega cat. no. G7570) according to the manufacturer’s 
standards, measuring luminescence using an Envision plate reader. IC50 values were 
calculated using a non-linear regression curve fit in GraphPad Prism 6. For each 
treatment condition, N = 3 biological replicates were used.

Western blot studies. For western blot analysis, 2 × 106 cells per well were treated 
with compounds at the indicated concentrations at various times. Cells were 
collected and lysed in radioimmunoprecipitation assay buffer containing protease 
inhibitors. An amount of 20 μg of lysate was run in each SDS polyacrylamide 
gel electrophoresis lane and blotted onto polyvinylidene difluoride membranes. 
Antibodies for immunoblotting were BRD4 purchased from Bethyl Laboratories 
(Sangon, Shanghai, China), and glyceraldehyde 3-phosphate dehydrogenase from 
Proteintech (USA).

PK studies. PK studies were performed at WuXi AppTec (Shanghai). Briefly, 
two compounds (dBET6 and compound 1) were formulated in solubilizing 
vehicles (10% DMSO/10% solutol/80% water) and administered intraperitoneally 
to CD-1 mice in the cassette at 2 mg kg−1 each. The animal room environment 
was controlled (target conditions: temperature 18–26 °C, relative humidity 
30–70%, 12 h artificial light/12 h dark). The study was permitted by WuXi 
AppTec Institutional Animal Care and Use Committee. Serial blood samples 
were collected at 0.083, 0.25, 0.5, 1, 2, 4, 8 and 24 h post dose and processed for 
plasma by centrifugation. Plasma drug concentrations were determined by liquid 
chromatography with tandem mass spectrometry (n = 3 mice per time point). The 
PK parameters were calculated by fitting the individual plasma concentration–time 
data to a non-compartmental model using Phoenix WinNonlin 6.3.

hERG channel inhibition assay. Compound 1 was tested for its in vitro effects on 
the electric current passing through hERG potassium channels stably transfected 
in a HEK 293 cell line to determine the concentration–response relationship 
for hERG inhibition by compound 1 using the manual patch-clamp technique. 
Compound 1 was tested at 0.3, 1, 3, 10 and 30 μM in duplicate. The assay was 
performed by Pharmaron (Beijing, China).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data used in this paper are publicly available and can be accessed at http://cadd.
zju.edu.cn/protacdb/ for the PROTAC-DB dataset, https://zinc15.docking.org/ for 
the ZINC dataset and https://www.rcsb.org for the protein crystal structure. Source 
data are provided with this paper.

Code availability
Demo, instructions and codes for PROTAC-RL are available at https://github.com/
biomed-AI/PROTAC-RL.
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