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Abstract—Link prediction for knowledge graphs aims to pre-
dict missing connections between entities. Prevailing methods are
limited to a transductive setting and hard to process unseen
entities. The recently proposed subgraph-based models provide
alternatives to predict links from the subgraph structure sur-
rounding a candidate triplet. However, these methods require
abundant known facts of training triplets and perform poorly
on relationships that only have a few triplets. In this paper, we
propose Meta-iKG, a novel subgraph-based meta-learner for few-
shot inductive relation reasoning. Meta-iKG utilizes local sub-
graphs to transfer subgraph-specific information and to rapidly
learn transferable patterns via meta-gradients. In this way, we
find the model can quickly adapt to few-shot relationships using
only a handful of known facts with inductive settings. Moreover,
we introduce a large-shot relation updating procedure to ensure
that our model can generalize well to both few-shot and large-
shot relations. We evaluate Meta-iKG on inductive benchmarks
sampled from the NELL and Freebase, and the results show that
Meta-iKG outperforms the currently state-of-the-art methods in
both few-shot scenarios and standard inductive settings.

Index Terms—Inductive relation prediction, meta-learning,
knowledge graph, subgraph scoring

I. INTRODUCTION

Knowledge graphs (KGs) are repositories of large numbers
of triplets in the form of relations between two entities,
encoding knowledge and facts in the world. This kind of
graph-structured knowledge has played a critical role across
a wide range of tasks such as Semantic Search [If], Ques-
tion Answering [2], and many more. However, due to the
limitations of human knowledge and information extraction
algorithms, they typically suffer from incompleteness, that is,
absent links in the KGs. To automate the KG completion
process, numerous latent representation methods have been
proposed to condense each entity and relation into a low-
dimensional and continuous vector space, which can then
be utilized to infer missing links by operating the produced
embeddings [[3]-[7].

While these embedding-based models have shown promis-
ing performance, prevailing methods typically assume a fixed
set of entities in the graph and neglect the evolving character
of KGs. However, real-world KGs are often dynamic and ever-
evolving [8]], with new entities being added at any given mo-
ment, e.g., new users on online shopping platforms. Recently,
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taking inspiration from the success of graph neural networks
(GNNs) in graph structure modeling [9], a few efforts have
been made to subgraph-based inductive relation prediction,
combining the beneficial qualities of both scalability and
interpretability [[10], [[11]. The basic strategy behind this type
of models is to score a target triplet based on its enclosing
subgraph. It can facilitate the prediction of completely novel
entities that are not surrounded by known nodes, since the
domain-related initial embedding of these emerging entities is
not required in the modeling.

Despite the impressiveness of model performance, this
framework assumes that there are enough triplets to train
robust and effective reasoning models for each relation in
KGs, as GNNs usually need substantial instances to enable
the model stability [[12]]. Nonetheless, previous works have
observed that a large portion of KG relations are actually
long-tailed [13]], [[14] and only occur a handful of times,
which can be referred to as few-shot relations. Some pilot
experiments have demonstrated that the few-shot scenario in-
curs the infeasibility of GNN models, resulting in catastrophic
performance decline on those few-shot classes [[15]], [16]. The
inability to handle the presence of very few samples is one
of the major challenges for the current GNNs. To perform
the few-shot link prediction task, several attempts [[1]], [|17]]
have incorporated graph structured data into meta learning.
They achieve fairly good performance in few-shot relation
prediction yet still have two main limitations: (i) they only
encode one-hop neighbors of entities and neglect the high-
order neighborhood information around a target triplet; (ii)
they are limited to transductive settings and cannot process
unseen entities. In fact, few-shot relations often appear when
new entities are encountered. Therefore, few-shot inductive
relation reasoning is a non-trivial task of considerable impor-
tance that has remained under-explored.

Present Work. To address the aforementioned challenges,
we propose Meta-iKG, a novel subgraph-based meta learner
for few-shot inductive relation reasoning. Meta-iKG utilizes
local subgraphs to transfer subgraph-specific information and
to rapidly learn transferable patterns via meta-gradients.
Specifically, we first translate link prediction as a subgraph
modeling problem. Then, we regard triplet queries with the
same relation 7 in KGs as a single task. Following the previous
meta-learning paradigm [18]-[20], we use tasks of high-
frequency relations to construct a meta-learner, which includes
common features across different tasks. The meta-learner can
be fast adapted to the tasks of few-shot relations, by providing
a good initial point to train their relation-specific subgraph
scoring functions. Moreover, different from standard meta-
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learning, we introduce a large-shot relation update procedure
to eliminate the bias introduced by the few-shot relational
meta-updating, which enables our Meta-iKG to generalize well
to both large-shot and few-shot relations. We evaluate Meta-
iKG on several novel inductive link prediction benchmarks
sampled from NELL and Freebase, and experimental results
show that Meta-iKG outperforms the state-of-the-art methods
in both few-shot and standard inductive settings.
In brief, the main contributions are listed below:

o Introducing an inductive few-shot relation prediction
problem which is different from previous works and more
suitable for practical scenarios.

« Proposing a novel few-shot subgraph embedding model,
Meta-iKG, that fits the few-shot nature of knowledge
graph and can naturally generalize to the unseen entities.

o Experiments on eight inductive datasets demonstrate
that our model achieves state-of-the-art AUC-PR and
Hits@10 across most of them in both few-shot and
standard inductive settings.

II. RELATED WORK

Inductive relation prediction. A close research line is the
rule-based approach that utilizes the observed co-occurrence
of frequent patterns in the knowledge graph to identify
logical rules [21]]. Inspired by the statistical rule-induction
approach, some differentiable rule learners including RuleN
[22]], NeuralLP [23], and DRUM [24] are introduced to
simultaneously learn the logical rules and confidence scores
in an end-to-end paradigm. However, they do not consider the
neighborhood structure around the predicted triplets and thus
are less expressive. Recent studies incorporate graph neural
network into inductive relation reasoning to capture multi-hop
information around the target triplet. GralL [10], for example,
proposes a subgraph-based relation reasoning framework to
process unseen entities and CoMPILE [11] extends the idea
by introducing a node-edge communicative message passing
mechanism to model the directed subgraphs, which fits the
directional nature of KGs. Our study can be interpreted as an
extension of CoMPILE method to few-shot knowledge graph
completion.

Few-shot relation prediction. Currently, the few-shot
learning models mainly fall into four strategies [25]]: (i) meth-
ods based on data augmentation [26]; (ii) methods based on
learning of analogy tasks [27]; (iii) metric-based approaches
[28]], [29] and (iv) meta-optimizer based approaches [18]], [30],
[31]. Most few-shot relation prediction methods in the field of
KG embedding are dominated by the last two types strategies.
For example, GMatching [1]] use metric methods to generalize
over new relations from a handful of associative relations in
a knowledge graph. Another line of research like MetaR [17]]
proposes to optimize the model parameters given the gradients
on few-shot instances. They employ the model-agnostic meta-
learning (MAML) [18] to train model by a small number
of gradient updates, leading to the fast adaption on a new
task. A few attempts have also been proposed that combine
meta-learning with multi-hop reinforcement learning [32] or
sequential network [33] to perform few-shot link prediction,

while all of them only perform transductive relation prediction
and cannot be directly transferred to the inductive setting. A
key distinction between previous works and the one which we
consider in this work is that we explicitly face the problem
of few-shot scenario for inductive relation reasoning, which
is more challenging as it needs to generalize to new types of
relations. To the best of our knowledge, this work is the first
research on few-shot learning for inductive relation reasoning.

III. METHOD
A. Formulation and Model Overview

A triplet in a KG is denoted as (s,r,t) where s, r, and ¢
refers to the head entity, relation, and tail entity, respectively.
Inductive relation prediction aims to evaluate the plausibility
of a target triplet (st,rr,tr), where the embeddings of st
and t7 are unavailable during reasoning. In this paper, we aim
to enable the model to generalize well on the relations that
only have few training triplets. Firstly we split the relations
into few-shot and large-shot relations. If the number of triplets
including a relation r is fewer than a threshold K7, we denote
r as a few-shot relation, otherwise, it is a large-shot (normal)
relation. Following the idea of meta-learning [[1]], [17], [18]],
[32], we train triplets with large-shot relations to find well-
initialized parameters and adapt the model on triplets with few-
shot relations from the found initial parameters. An overview
of our Meta-iKG can be seen in Fig. 1| In particular, Meta-iKG
can be divided into two modules: (i) relation-specific learn-
ing and (ii) meta-learning. The purpose of relation-specific
learning is to learn a GNN model with parameters 6, using
a set of subgraphs surrounding a specific relationship r to
identify the transferable patterns. Meta-learning is based on
the relation-specific module for learning a meta model with
parameters 0 and enables fast adaptation for new few-shot
tasks. We introduce these two parts in following sections.

Large-shot relations
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Fig. 1: Overview of Meta-iKG. A) Extracting local enclosing
subgraphs around target entities. B) Meta-learner adapts to
few-shot and large-shot relations via three-step optimization.

B. Subgraph-aware Relation-specific Learning

For each relation rr € R, we learn a relation-specific
subgraph scoring function using the triplets with the relation
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r7 to make predictions. Our subgraph-based scoring function
consists of three subtasks: (i) extracting the enclosing subgraph
surrounding two target entities, (ii) labeling the entities in the
subgraph, and (iii) scoring the labeled subgraph using GNNs.

Subgraph extraction: We first extract the h-hop directed
enclosing subgraph G between the target head and tail entities,
where h+1 is the maximum distance from target head to target
tail. This is based on the assumption that the paths connecting
the two target entities include the information that can infer
the target relation [[10]. We refer the reader to Appendix for
the details of subgraph extraction.

Inductive node labeling function: An inductive node
labeling function is applied to mark nodes’ different roles in
the subgraph without leveraging external domain features. As
such, the model has to learn the structural semantics in the sub-
graph, which is the key reason for the inductive nature of our
model. Following [2[], we initialize the node embedding IN by
the distances to the target entities to embed the relative position
of each node in the subgraph. In detail, for a node i, its label
is defined as N; = one-hot(d;) @ one-hot(d;;) € R2(+1)
where dg; denotes the shortest distance from the target head
entity to node 4, and d;; denotes the shortest distance from
node ¢ to target tail entity. Following GralL [10], the relative
positions of sy and ¢p are labeled (0,1) and (1,0) so as to be
identifiable by the model.

Directed Subgraph Scoring: In principle, our framework
can be combined with a wide variety of GNN-based ap-
proaches, and here we focus on communicative message
passing neural network following the idea of CoMPILE [11]].
Formally, given a target triplet (sp, rr, t7) with the enclosing
subgraph G, the subgraph scoring function can be defined as:

S =GNN(G, Ny, R,., N¢.;0) (1
where S denotes the predicted plausibility of the target triplet,
Ny, R,,, and N;, denotes the embedding of target head,
target relation, and target tail, respectively. The relation em-
bedding R € RM*4 (N, is the number of relations) is
parameterized as a learnable matrix shared across subgraphs,
and each row in R represents the embedding for a specific
relation. Please refer to the Appendix for the details of GNN.

We use the following equation to compute the task loss:

LY () = log(exp(—5 - S) + 1) 2)

where L?T (0) is the predictive loss for relation rp with data
D = {(sp,rr,tr)}. LE (8) is formatted as the soft-margin
loss. .S denotes the true score of the triplet.

C. Meta-Learning

The goal of meta-learning is to learn well-initialized param-
eters, such that small changes in the parameters will produce
significant improvements on the loss function of any task
[18]. In this section, we describe our meta-learning strategy in
detail which enables our model to generalize well on both
few-shot and large-shot relations. Formally, we consider a
meta GNN, i.e. CoMPILE with parameters 6. Firstly we
divide the relations into few-shot and large-shot relations
according to the threshold: Kt = np/ng X -~ where
np denotes the number of training triplets, np denotes the

3

number of relations, and v is a scalar. In each iteration, we
sample a batch of relations ! from large-shot relation set
R! = {r|n, > Kr,r € R} and a batch of relations 7/ from
few-shot relation set Rf = {r|n, < Kr,r € R}. Then we
sample triplets belonging to ! and r/ to form the support set
Dg and query set D¢, respectively.

The model is firstly updated by the support set Dg in large-
shot tasks T*, after which the parameters of the model become
0,.. Following MAML [18]], the updated parameters 6,. are
computed using one or more gradient descent updates on the
few-shot tasks 7°f. Formally, we will go over many large-shot
tasks (i.e., meta-training tasks) in a batch:

0,,=60—a- ngLﬁs (6), (3)
7}

where « is the learning rate parameter, Dg is a support set
randomly sampled from the triplets belonging to large-shot re-
lations r! for task 7. After the relation-specific parameters 6, .
is learned, we evaluate 6,. on the query set D¢ belonging to
few-shot relations r/ for task 7'/. The meta-gradient computed
from this evaluation is used to update the meta policy network
CoMPILE with parameters 6. Specifically, we update 6 using
the few-shot tasks 77 (i.e., meta-testing tasks) as follows:

0,0 =08 Vol F(8,), @)

I
T;

where 3 is the meta-learning rate. Eq. ] computes the meta-
gradients of € across two steps using the query set belonging
to few-shot relations to finally update the parameters. By this
means, Meta-iKG can learn to fast adapt to the few-shot
relations with the aim of the well-initialized parameters 0.
updated by the support set of large-shot relations.

The above two steps are the regular operations of meta-
learning. While promising on the few-shot relations, these
traditional operations of meta-learning will introduce bias to
the updated parameters, because the final updated parameters
0,.; are only updated by the query set belonging to few-shot
relations (see Eq. ). Therefore, the model may not perform
well on large-shot relations, as the support set belonging to the
large-shot relations is only used to provide a good initialization
of the parameters for computing the meta-gradients. To this
end, we introduce a novel updating operation on 6,.; using
the support set Dg with a smaller learning rate B/, named
‘large-shot relation update procedure’:

00, —8> Vo, LI(0,1), (5)
!
Combining Eq. ] and Eq. 5] the final updated parameters
depend on both the few-shot and large-shot relations. This
simple operation enables Meta-iKG to generalize well on the
whole inductive dataset. Notably, we apply Meta-SGD [19]]
to update the meta-learner, in which case the learning rate
parameter o« is meta-learnable.

IV. EXPERIMENTS
A. Dataset

We use the inductive datasets extracted from FB15K-237
[34] and NELL-995 [1]]. Theoretically, in the inductive setting,
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both rule-based and subgraph-based algorithms rely on the
paths between the target entities to infer relation. If there is
no enclosing subgraph between the target entities, the model
has no information to infer the relation but relies on the bias in
the dataset to make prediction, which makes no sense compu-
tationally. Therefore, we follow CoMPILE [11] to extract the
inductive datasets which have filtered out the triplets that have
no enclosing subgraph between the target entities under hop h
and ensure more accurate evaluation of the models. Note that
CoMPILE extracts three versions of inductive datasets for each
dataset, while we extract a new version of inductive datasets
for FB15k-237 and Nell-995 (i.e., the v4), respectively. The
inductive datasets are the filtered versions of the corresponding
inductive datasets extracted in GralLL [10]. Since we use
more challenging datasets, the performance of the models is
generally weaker than the performance reported in GralL [10].
Please refer to the Appendix for the statistics of the filtered
datasets.

B. Experimental Details

Evaluation Protocol: To be consistent with prior meth-
ods, we use AUC-PR and Hits@10 to evaluate the models.
To compute AUC-PR, for each test triplet, we sample one
negative triplet and evaluate which triplet has larger score.
This procedure is repeated for ten times to obtain the average
AUC-PR for each run. For Hits@ 10, we rank each test triplet
among the sampled 49 negative head/tail triplets and evaluate
whether test triplet score makes it into top 10. The negative
triplet is obtained by replacing the head or tail of the test
triplet with other entities. To train the model, we assign 1 and
-1 as the score of true and negative triplet respectively. We
run the model for five times and average the testing results to
obtain the final performance. We observe that the Mata-iKG
has stable performance across a wide range of experimental
settings, and the variances are quite low. Therefore, we do not
present the standard errors in the tables.

Hyper-parameter Setting: We run the models for 20
epochs in the standard inductive datasets, and each epoch
contains 100 meta-updates. We use Adam [35] as optimizer
with learning rate being 0.001. The hop number h is 3 which
is consistent with GralL. and CoMPILE. The number of GNN
layers [ is set to 3 or 4 which depends on the datasets. The
few-shot factor « is set to 0.1 at the training stage. For the
sake of complexity, the subgraph will be pruned if it contains
too many nodes, and we ensure that the pruned subgraph can
also have a complete path between target entities.

C. Baselines

We compare Meta-iKG with the state-of-the-art subgraph-
based inductive models GralL [[10] and CoMIPLE [11]] as well
as the rule-based algorithm RuleN [22]]. For meta-learning
strategy, we use both MAML [18] and Meta-SGD [19] as two
different meta-learning strategies to create model variants.

D. Comparison on Few-Shot Testing Set

In this section, we first evaluate Meta-iKG on few-shot
relations, where the relations whose number of training triplets

4

K is fewer than 5, 10, and K are selected to evaluate the sta-
bility and robustness on different settings of few-shot inductive
relation prediction (K7 is the threshold to split the large-shot
and few-shot relations in training stage). For comparison, we
also present the results of subgraph-based baselines CoMPILE
(11] and GraIL [10]. According to Table [I and we find
that (a) both versions of Meta-iKG significantly outperform
CoMPILE and GralL on the majority of settings and datasets,
and the improvement is much larger compared to that in the
standard inductive datasets (see Table [III| and Table for
the results on standard inductive datasets); (b) although the
MAML version of Meta-iKG performs weaker than CoMPILE
and GralLL on some standard datasets, it manages to outper-
form the baselines significantly on the few-shot scenarios.
These results demonstrate the effectiveness and stability of
Meta-iKG in few-shot inductive relation prediction.

E. Comparisons on Standard Inductive Datasets.

To clarify the importance of improving the predictive power
of few-shot relations, we compare our proposed Meta-iKG
with other baselines on the standard inductive datasets. From
the Table [I] and Table we can conclude that: (a) Meta-
iKG, especially the Meta-SGD version, achieves the best
performance on the majority of the inductive datasets in terms
of both the AUC-PR and Hits@10 evaluation metrics by a
significant margin; (b) the MAML version of our Meta-iKG
performs worse than the Meta-SGD version, demonstrating
the importance of the meta-trainable learning rate in the fast
adaption of meta-learning. Compared to the MAML version
that just provides a good initialization of the model parameter,
the Meta-SGD version also learns the update direction and
learning rate of the model parameter, leading a stronger
capacity. These results demonstrate the effectiveness of our
meta-learning strategy in inductive relation prediction, which
can generalize well on both large-shot and few-shot relations
via the updating procedure in Eq. 3] Eq. ] and Eq. [5] Meta-
iKG enables a better prediction capacity on few-shot relations
without sacrificing the performance on overall datasets.

F. Analysis on the Model Complexity

Since the meta-learning algorithm does not introduce ad-
ditional module to process the subgraph but merely modifies
the optimization algorithm of the model, the time complexity
remains unchanged compared to the original model during
prediction. However, due to the flexible size of the subgraph,
the common proxy to evaluate the time complexity of the
model, i.e., FLOPs (which computes the number of operations
go through in the forward pass given a sample), is changeable
and depends on the subgraph. As for the space complexity,
for Meta-iKG (MAML), since it introduces no additional
parameters, the number of parameters is the same as that
of CoMPILE (which is 41,185 when the dimensionality of
relation embedding d is 32 and the number of layers [ is
3 for FB15k-237-vl dataset). For Meta-iIKG (Meta-SGD),
it introduces learnable learning rate parameter o« which has
the same size as the parameter of the meta-learner (i.e.,
CoMPILE). Notably, the « is not added to the model itself,
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FB15k-237-vl FB15k-237-v2 Nell-995-v1 Nell-995-v2
Model K<5 | K<10 | K<Kr | K<5 | K<10 | K< Kr K < Kt K<5| K<10 | K<Krp
GralL 50.00 37.50 43.79 83.33 80.00 80.77 0.00 64.00 66.67 65.71
CoMPILE 43.75 42.86 46.43 80.08 80.00 76.92 0.00 78.18 72.41 67.14
Meta-iKG (MAML) 75.00 56.25 57.14 86.67 88.33 88.46 50.00 80.00 74.36 72.50
Meta-iKG (Meta-SGD) 75.00 60.71 53.57 86.67 90.00 88.46 50.00 78.00 78.21 76.25

TABLE I: Comparison on Few-shot Relations (Hits@10). For Nell-995-v1, since there is no relation whose number of
training triplets is fewer than 10, we only present the result of K < K setting.
FB15k-237-v3 FBI15k-237-v4 Nell-995-v3 Nell-995-v4
Model K<5 | K<10 | K< Kr K< Kr K<5 | K<I0 | K<Ky | K<5 | K<10 | K< Kr
GralL 54.67 56.29 67.75 67.86 53.17 63.81 64.88 68.78 68.73 68.88
CoMPILE 58.33 57.14 70.00 68.57 65.87 70.95 70.25 72.50 72.20 72.55
Meta-iKG (MAML) 66.67 64.29 80.00 76.42 65.87 71.43 71.07 7425 73.90 74.34
Meta-iKG (Meta-SGD) 58.33 57.14 73.33 73.57 65.87 72.86 73.14 78.63 78.29 78.28

TABLE II: Comparison on Few-shot Relations (Hits@10). For FB15k-237-v4, since there are few testing triplets that belong
to the relations whose number of training triplets is fewer than 10, we only present the K < Kp case.

FB15k-237 NELL-995
Model vl v2 v3 v4 vl v2 v3 v4
RuleN 79.60 | 82.67 | 83.03 | 84.01 | 67.12 | 80.52 | 73.91 | 77.07
GralL 80.45 | 83.66 | 84.35 | 83.08 | 69.35 | 85.04 | 84.43 | 80.19
CoMPILE 79.95 | 83.56 | 83.97 | 83.87 | 68.36 | 85.50 | 84.04 | 79.89
Meta-iKG (MAML) 80.31 8295 | 8252 | 84.23 | 72.12 | 84.11 82.47 | 79.25
Meta-iKG (Meta-SGD) | 81.10 | 84.26 | 84.57 | 83.70 | 72.50 | 85.97 | 84.05 | 81.24
TABLE III: Comparison between Models (AUC-PR).
FB15k-237 NELL-995
Model vl v2 v3 v4 vl v2 v3 v4
RuleN 6535 | 71.68 | 67.84 | 70.53 | 53.70 | 69.77 | 64.29 | 57.92
GralL 66.52 | 73.82 | 70.15 | 68.30 | 55.56 | 76.40 | 75.66 | 71.24
CoMPILE 66.52 | 72.37 | 69.77 | 70.27 | 62.35 | 76.51 | 75.58 | 68.19
Meta-iKG (MAML) 66.52 | 72.37 | 68.81 | 74.32 | 60.49 | 74.07 | 77.99 | 71.63
Meta-iKG (Meta-SGD) | 66.96 | 74.08 | 71.89 | 72.28 | 64.20 | 77.91 | 77.41 | 73.12

TABLE IV: Comparison between Models (Hits@10).

but is used to optimize the model. Therefore, the number of
parameters of the model remains unchanged.

G. Analysis on the Influence of K

We study the effect of the number of training triplets K per
relation on the performance. We select the relations whose
number of training triplets is no less than 10 and no larger
than K7, and some training triplets are randomly removed
until there are only K triplets per selected relation. K is
selected from 2 to 10 for each relation in our experiments,
and we also evaluate the predictive result of these relations
without removing any triplets for comparison. For compre-
hensive comparison, we present the corresponding results of
subgraph-based methods GralL [10]] and CoMPILE [11]]. From
the results in Fig. Q] we can infer that when K > 6, the
performance of the model tends to converge (the performance
has no significant difference with the non-removed version
whose AUC-PR is 88.89), suggesting that Meta-iKG can reach
satisfactory performance with a small number of training
samples. Compared to GralL. and CoMPILE, our model shows
consistent improvement with K set to different values. These
results further demonstrate the effectiveness of our Meta-iKG
in few-shot inductive relation prediction.

H. Ablation Studies on Meta-learning

We investigate the effectiveness of the introduced large-shot
relation update procedure and the relation split operation. As
presented in the ‘W/O LRUP’ case on Table when the
large-shot relation update procedure is removed, a significant
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Fig. 2: Analysis on the Influence of K.

drop on performance is observed, suggesting that the model
cannot generalize well on the standard inductive datasets. Note
that the model still performs well on few-shot relation (the
Hits@10 is 62.5% on FB15k-237-v1 dataset when K < K7),
which supports our claim that the model cannot perform
well on large-shot relation using the regular meta-learning
procedure. With the proposed LRUP, our model can generalize
well on both few-shot and large-shot relations.

In the case of “‘W/O RSO’, we do not split the relations
into large-shot and few-shot relations, but randomly sample
a batch of relations for meta-training and meta-testing during
each iteration. Without PRO, the results show that there is a
decline of performance on both the datasets (over 2.5% drops
on AUC-PR of FB15k-237-v1 dataset), which demonstrates
the effectiveness of our strategy to adapt the model trained on
large-shot relations to few-shot relations. Notably, the RSO
is specifically designed to promote the learning of few-shot
relations, and therefore it may have no great impact on the
whole dataset. To verify this, we further evaluate the effec-
tiveness of RSO on the few-shot relations. The results show
that when the RSO is removed, the Hits@ 10 for FB15k-237-v1
and FB15k-237-v2 datasets are 47.14 and 82.68 respectively,
both significantly lower than 53.57 and 88.46 when RSO is
used (in the case of K < Kr).

L. Analysis on the Hyperparameter h

In this section, we analyze the effect of the hyperparameter
hop h. The hop h is set from 2 to 4 in our experiments, where
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FB15k-237-v1 FB15k-237-v2
AUC-PR | Hits@10 | AUC-PR | Hits@10
W/O LRUP 63.97 43.48 63.37 39.08
W/O RSO 78.34 65.22 84.14 73.42
Meta-iKG 81.10 66.96 84.26 74.08

TABLE V: Ablation Studies on Inductive Datasets. The
‘LRUP’ refers to our designed large-shot relation update
procedure, and ‘RSO’ represents relation split operation.

a larger h usually indicates more connections between the
target entities in the subgraph. As shown in Table [VI, when h
is set to 2, a significant drop on performance is observed,
mainly for the reason that the connections between target
entities become rare such that the relation inference cannot
be conducted. When h is set to 4, the model’s performance is
slightly lower compared to the performance when £ is set to 3.
We speculate that this is because a large number of noisy nodes
and edges are added into the subgraph when h is 4, such that
the discrimination of subgraph drops and overfitting occurs.
We noticed that there are strong connections between target
entities for the majority of triplets even when A is 3. Moreover,
the subgraph becomes much larger and the complexity is much
higher when h is 4. Therefore, for the sake of performance and
complexity, we set h to 3.

FB15k-237-v1 Nell-995-v1
h | Hits@10 | AUC-PR | Hits@10 | AUC-PR
2 65.22 78.35 59.88 67.70
3 66.96 81.10 64.20 72.50
4 65.65 80.98 64.20 69.52

TABLE VI: Analysis on the Hyperparameter h. Since the
majority of the subgraphs are empty when h is 1 which have
no real meaning, we do not present the results of hop 1.

V. CONCLUSION

We present Meta-iKG, a novel method for few-shot induc-
tive relational inference. Meta-iKG uses local subgraphs to
convey subgraph-specific information and to learn transferable
patterns faster via meta-gradients. We evaluate Meta-iKG on
two novel several-shot inductive link prediction benchmarks,
and the experimental results show that Meta-iKG outperforms
state-of-the-art methods.
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