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Abstract

Protein–DNA interactions play crucial roles in the biological systems, and identifying protein–DNA binding sites is the first step
for mechanistic understanding of various biological activities (such as transcription and repair) and designing novel drugs. How to
accurately identify DNA-binding residues from only protein sequence remains a challenging task. Currently, most existing sequence-
based methods only consider contextual features of the sequential neighbors, which are limited to capture spatial information. Based
on the recent breakthrough in protein structure prediction by AlphaFold2, we propose an accurate predictor, GraphSite, for identifying
DNA-binding residues based on the structural models predicted by AlphaFold2. Here, we convert the binding site prediction problem
into a graph node classification task and employ a transformer-based variant model to take the protein structural information into
account. By leveraging predicted protein structures and graph transformer, GraphSite substantially improves over the latest sequence-
based and structure-based methods. The algorithm is further confirmed on the independent test set of 181 proteins, where GraphSite
surpasses the state-of-the-art structure-based method by 16.4% in area under the precision-recall curve and 11.2% in Matthews
correlation coefficient, respectively. We provide the datasets, the predicted structures and the source codes along with the pre-trained
models of GraphSite at https://github.com/biomed-AI/GraphSite. The GraphSite web server is freely available at https://biomed.nscc-
gz.cn/apps/GraphSite.

Keywords: protein–DNA binding site, AlphaFold2, predicted protein structure, graph transformer

Introduction
Protein–DNA interactions play crucial roles in many bio-
logical processes such as transcription, repair and signal
transduction [1, 2]. Although protein–DNA binding affin-
ity prediction [3, 4], protein-interacting site prediction
on DNA (e.g. promoter prediction; [5]) and protein–DNA
docking [6] have been widely studied, accurately identi-
fying amino acids involved in protein–DNA interactions
solely based on proteins is also an important topic in
bioinformatics, which helps to improve molecular dock-
ing [7, 8], understand disease mechanism [9, 10], predict
protein function [11, 12] and identify potential drug tar-
get for novel drug design [13, 14]. However, conventional
experimental methods for DNA-binding site detection
such as X-ray crystallography [15] and fast ChIP [16]
are costly and time-consuming. Although protein–DNA

binding patterns are complicated and many proteins
may specifically recognize local DNA structures such as
hairpins, cruciforms and G-quadruplexes [17, 18], DNA-
binding residues are often conserved [19]. Therefore, it is
necessary and feasible to develop complementary com-
putational methods capable of making reliable and accu-
rate DNA-binding site prediction.

Computational methods for DNA-binding site predic-
tion can be classified into two classes, sequence-based
and structure-based methods, according to their used
information. Sequence-based methods such as DNAPred
[20], DNAgenie [21] and NCBRPred [22] learn local pat-
terns of DNA-binding characteristics through sequence-
derived features. For example, NCBRPred adopts evo-
lutionary conservative information and predicted sec-
ondary structure and solvent accessibility extracted from
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protein sequence and employs bidirectional Gated Recur-
rent Units to learn local patterns from sequence contexts
using sliding-window strategy. Although these sequence-
based approaches require protein sequences only, the
lacks of using tertiary structures cause their limited
predictive accuracies.

By comparison, structure-based approaches infer-
ring binding sites from known structures are often
more accurate, which can be generally categorized
into template-based methods, machine learning based
methods and hybrid methods. Template-based methods
identify DNA-binding sites using the sequence and
structure information of templates, which are selected
by alignment or comparison algorithms [23, 24]. Nev-
ertheless, for the proteins that have no high-quality
template, the performance of these methods will be
seriously restricted. With features derived from protein
structures, recent structure-based machine learning
methods represent protein structures as voxels in three-
dimensional Euclidean space or nodes in connected
graphs. For example, DeepSite [25] maps protein atoms
into 3D voxels and employs 3D convolutional neural
networks (3DCNN) to extract features from neigh-
borhood of the target residue. Alternately, GraphBind
[26] encodes protein structures as graphs and adopts
graph neural networks (GNN) to learn the local tertiary
patterns for binding residue prediction. Hybrid methods
integrate template-based methods and machine learning
based methods simultaneously, such as DNABind [27],
COACH-D [28] and NucBind [7]. Albeit powerful, the
structure-based methods are not applicable to most
proteins that do not have known tertiary structures
due to the difficulties to determine protein structures
experimentally [29].

With the development of deep learning techniques,
protein structure prediction is experiencing a break-
through. The representative method, AlphaFold2 [30],
has incorporated physical and biological knowledge
about protein structure, information of multi-sequence
alignment (MSA) and the sophisticated design of the
deep learning algorithm. The method was shown able
to predict protein structure with atomic accuracy even
when no similar structure template is known, and
demonstrated accuracy competitive with experiment
in a majority of cases in the challenging 14th Critical
Assessment of protein Structure Prediction (CASP14).
Such breakthrough will undoubtedly benefit down-
stream protein function studies, including binding site
prediction.

Effective learning of protein structure remains a
challenging task, even though 1DCNN [31], 2DCNN
[32], 3DCNN [33], GNN and its variants [34, 35] have
been widely adopted. On the other hand, transformer
[36] is well-acknowledged as the most powerful neural
network in modelling sequential data, such as natural
language [37], drug SMILES [38] and protein sequence
[39]. In the last few years, transformer variants have also
been shown great performance in graph representation

learning [40–42]. Therefore, it is promising to advance the
protein binding site prediction by constructing accurate
structure model from sequence and effectively learning
the structural information through the recent graph
transformer technique.

In this study, we have developed a novel method
GraphSite, which applies graph transformer network
and predicted protein structures from AlphaFold2 for
sequence-based prediction of DNA-binding residues.
Specifically, we integrate MSA and structural information
to construct residual features and calculate pairwise
amino acid distances to mask out the spatially remote
amino acids when calculating attention scores in the
transformer. With the spatial information and structure-
aware transformer, GraphSite was found to outperform
other sequence-based and structure-based methods
through various performance evaluations. To the best
of our knowledge, this is the first work that utilizes
AlphaFold2-predicted structures and graph transformer
for protein–DNA binding site prediction, which can be
easily extended to sequence-based prediction of other
functional sites.

Materials and methods
Datasets
We adopted two publicly available benchmark datasets
from the previous study [26] to train and test our
method: Train_573 and Test_129, which are named
by the numbers of proteins in the datasets. These
two datasets were collected from the BioLiP database
[43], which pre-computes binding sites according to
experimentally determined complex structures from
Protein Data Bank (PDB; [44]). Concretely, Train_573
contains proteins released before 6 January 2016 while
Test_129 from 6 January 2016 to 5 December 2018. In
these datasets, a DNA-binding residue was defined if
the smallest atomic distance between the target residue
and the DNA molecule is less than 0.5 Å plus the sum
of the Van der Waal’s radius of the two nearest atoms.
To deal with the data imbalance problem, the authors
[26] applied data augmentation on Train_573, which
transferred binding annotations from protein chains
with similar sequences (sequence identity >0.8) and
structures (TM scores >0.5) to increase the number of
binding residues. This was conducted for the following
reasons: (i) similar proteins, although could derived
from different organisms, may have the same biological
function. (ii) different resolutions or co-factors may lead
to minor differences in the structures for the same
protein. Finally, CD-HIT [45] was used to ensure no
redundant protein with >30% sequence identity within
the training set and between the training and test set. To
further demonstrate the generalization of our method,
we built another independent test set (Test_181) based
on newly released DNA-binding proteins in BioLiP (6
December 2018–19 August 2021). We have removed
redundant proteins sharing sequence identity >30% over
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Table 1. Statistics of the three-benchmark datasets used in this
study

Dataset Binding
residues

Non-binding
residues

% of binding
residues

Train_573 14 479 145 404 9.06
Test_129 2240 35 275 5.97
Test_181 3208 72 050 4.26

Note: The columns give, in order, the dataset name, the number of binding,
the number of non-binding residues in each dataset, and the percentage of
the binding residues out of total.

30% overlap with any sequence in the above two datasets
and within Test_181 using CD-HIT. Details of the number
of binding and non-binding residues of these datasets
are given in Table 1.

Protein representation
In our framework, the DNA-binding site prediction task
is treated as a graph node classification problem, where
a protein consisting of n amino acid residues is rep-
resented by a node feature matrix X and a distance
matrix D.

Predicted protein structures and distance maps

Following the tutorial at https://github.com/deepmind/a
lphafold, we downloaded the model parameters and
genetic databases including UniRef90 [46], MGnify [47],
BFD [48], Uniclust30 [49], PDB70 [50] and PDB [44] to
implement AlphaFold2 in the Tianhe-2 supercomputer.
We set the ‘–max_template_date’ parameter to 14 May
2020 just as the AlphaFold2 model in CASP14 to predict
the protein structures in Train_573 and Test_129, from
which the relaxed models with the highest confidences
(measured by the predicted local distance difference
test (LDDT) scores) were chosen. However, to further
avoid the possibility that AlphaFold2 might use the
native known structures in PDB as templates, we
set ‘–max_template_date’ to 5 December 2018 when
predicting proteins in the independent Test_181. This
made Test_181 more challenging and closer to the
situation where only protein sequences instead of similar
templates are available. According to the predicted
protein structural models from AlphaFold2, we acquired
the coordinate of the Cα atom of each amino acid residue,
and then calculated the Euclidean distances between all
residue pairs, which formed a distance map D ∈ R

n×n.

Node features

We employed two groups of amino acid features to train
our model: MSA information and structural properties,
which were concatenated and formed the final node
feature matrix X ∈ R

n×438 with n denoting the length of a
protein sequence.

MSA information

Co-evolving amino acids may structurally contact, and
evolutionarily conserved residues may contain motifs

related to important protein properties such as DNA-
binding propensity. Here, we employed the ‘single rep-
resentation’ feature output by AlphaFold2 along with
the predicted structures. This single representation is
derived by a linear projection of the first row of the MSA
representation, which is a highly processed MSA fea-
ture matrix through 48 Evoformer blocks in AlphaFold2.
In addition, we also explored the widely used position-
specific scoring matrix (PSSM) and hidden Markov mod-
els (HMM) profile. Concretely, PSSM was generated by
running PSI-BLAST [51] to search the query sequence
against UniRef90 database with three iterations and an E-
value of 0.001. The HMM profile was produced by running
HHblits [52] to align the query sequence against Uni-
Clust30 database with default parameters. Each amino
acid was encoded into a 384-dimensional vector in single
representation and 20-dimensional vector in PSSM or
HMM, and the values were normalized to scores between
0 and 1 using Equation (1), where v is the original feature
value, and Min and Max are the smallest and biggest
values of this feature type observed in the training set.

vnorm = v − Min
Max − Min

(1)

Structural properties

Three types of structural properties were extracted by the
program DSSP [53] using predicted structures: (i) nine-
dimensional one-hot secondary structure profile where
the first eight dimensions represent eight-secondary
structure states, and the last dimension represents
unknown secondary structure. (ii) Peptide backbone
torsion angles PHI and PSI, which were converted
to a four-dimensional feature vector using sine and
cosine transformations. (iii) Solvent accessible surface
area (ASA), which was normalized to relative solvent
accessibility (RSA) by the maximal possible ASA of the
corresponding amino acid type. This 14-dimensional
structural feature group is named DSSP in this article.

The architecture of GraphSite
Figure 1 shows the overall architecture of the proposed
framework GraphSite, where the protein sequence is
input to AlphaFold2 to produce the single representation
and the predicted protein structure, from which the
distance map and DSSP are extracted. Finally, the single
representation, DSSP and sequence-derived features
PSSM and HMM are concatenated to form the node fea-
ture vector, which is then input to the graph transformer
masked by the distance map to learn the DNA-binding
site patterns.

Graph transformer

The traditional transformer encoder layer consists of a
multi-head self-attention module and a position-wise
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Figure 1. The overall architecture of GraphSite. The protein sequence is input to AlphaFold2 to produce the single representation and the predicted
protein structure, from which the distance map and DSSP are extracted. Then, the single representation, DSSP and sequence-derived features PSSM and
HMM are concatenated to form the node feature vector, which is then input to the graph transformer model with k-nearest mask by the distance map
to learn the DNA-binding site patterns.

feed-forward network. Let H = [hT
1, . . . , hT

n]T ∈ R
n×d denote

the input of the self-attention module where d is the
hidden dimension and hi ∈ R

1×d is the hidden representa-
tion of the ith amino acid. Note that the initial H(0) does
not have to be the feature matrix X, which means that
a fully connected layer can be applied on X to obtain
the initial hidden representation H(0). The input H(l) is
projected by three matrices WQ ∈ R

d×dK , WK ∈ R
d×dK and

WV ∈ R
d×dV to the corresponding queries, keys and values

representation Q, K, V:

Q = H(l)WQ , K = H(l)WK, V = H(l)WV (2)

The self-attention is then calculated as:

A = QKT

√
dK

(3)

H(l+1) = Attn
(
H(l)

)
= softmax(A)V (4)

where A is a matrix capturing the similarities between
queries and keys. In order to take the protein struc-
ture information into account for focusing on spatially
adjacent residues, we adopt k-nearest mask according to
the distance matrix D to mask out the spatially remote
amino acids, which means that for node i, only spatially
adjacent nodes j ∈ Neighbor(i, k) are used to calcu-
late the attention scores in the transformer. In order to
jointly attend to information from different represen-
tation subspaces at different positions, we use multi-
head attention to linearly project the queries, keys and
values h times, perform the attention function in parallel
and finally concatenate them together. In this study,
dK = dV = d/h.

Multilayer perceptron

The output of the last graph transformer layer is input
to the multilayer perceptron (MLP) to predict the DNA-
binding probabilities of all n amino acid residues:

Y′ = Sigmoid
(
H(L)W + b

)
(5)

where H(L) ∈ R
n×d is the output of the Lth graph trans-

former layer; W ∈ R
d×1 is the weight matrix; b ∈ R is

the bias term and Y′ ∈ R
n×1 is the predictions of n amino

acid residues. The sigmoid function normalizes the out-
put of the network into binding probabilities ranging
from 0 to 1.

Implementation details
We performed 5-fold cross-validation (CV) on the train-
ing data, where the data were split into 5-folds ran-
domly. Each time, a model was trained on 4-folds and
evaluated on the remaining one fold. This process was
repeated five times and the performances on the 5-folds
were averaged as the overall validation performance,
which was used to choose the best feature combination
and optimize all hyperparameters through grid search
(Supplementary Table S1). In the testing phase, all five-
trained models in the CV were used to make predic-
tions, which were averaged as the final predictions of our
method.

Specifically, we utilized a 2-layer graph transformer
module with 64 hidden units and the following set of
hyperparameters: h = 4, k = 30 and batch size of 16. We
employed the Adam optimizer [54] with β1 = 0.9, β2 = 0.99,
ε = 10−5, weight decay of 10−5 and learning rate of 3 × 10−4

for model optimization on the binary cross entropy loss.
The dropout rate was set to 0.2 to avoid overfitting.
We implemented the proposed model with Pytorch 1.7.1

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab564/6509729 by Sun Yat-Sen U

niversity user on 05 February 2022



Protein-DNA binding site prediction | 5

[55]. Within each epoch, we drew 5000 samples from the
training data using random sampling with replacement
to train our model. The training process lasted at most 15
epochs and we performed early-stopping with patience
of 4 epochs based on the validation performance, which
took ∼40 min on an Nvidia GeForce RTX 3090 GPU. In
the testing phase, it took ∼5 s to make prediction for one
protein with pre-computed features.

Evaluation metrics
Similar to the previous studies [56, 57], we used speci-
ficity (Spe), precision (Pre), recall (Rec), F1-score (F1),
Matthews correlation coefficient (MCC), area under the
receiver operating characteristic curve (AUC) and area
under the precision-recall curve (AUPR) to measure the
predictive performance:

Spe = TN
TN + FP

(6)

Pre = TP
TP + FP

(7)

Rec = TP
TP + FN

(8)

F1 = 2 × Precision × Recall
Precision + Recall

(9)

MCC = TP × TN − FN × FP√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(10)
where true positives (TP) and true negatives (TN) denote
the number of binding and non-binding sites identified
correctly, and false positives (FP) and false negatives
(FN) denote the number of incorrectly predicted binding
and non-binding sites, respectively. AUC and AUPR are
independent of thresholds, thus revealing the overall per-
formance of a model. The other metrics were calculated
using a threshold to convert the predicted binding prob-
abilities to binary predictions, which was determined
by maximizing F1-score for the model. We used AUPR
for the above hyperparameter selection as it is more
sensitive and it emphasizes more on the minority class
in imbalanced two-class classification tasks [58].

Significance tests were performed to investigate if the
results are not biased by a subset of test proteins by mea-
suring whether the predictive performance is consistent
over different subsets. Similar to [26, 59], we randomly
sampled 70% of the test proteins and calculated the
AUPRs of the best-performing method and other meth-
ods. This was repeated 10 times and we compared the
corresponding 10 paired results. If the measurements
were normal, as tested by the Anderson–Darling test [60]
with 0.05 significance, we applied the paired t-test to
investigate significance. Otherwise, the Wilcoxon rank
sum test [61] was utilized. If P-value <0.05, the difference
between a given pair of methods is considered statisti-
cally significant.

Results
Performance on the 5-fold CV and independent
tests
We evaluated the performance of GraphSite by AUC and
AUPR using 5-fold CV on the Train_573 dataset and inde-
pendent tests on the Test_129 and Test_181 datasets.
The final GraphSite model obtains AUC of 0.915, 0.934
and 0.917; as well as AUPR of 0.589, 0.544 and 0.369 on
the 5-fold CV and two independent tests, respectively.
The consistent AUC on the CV and tests indicate the
robustness of our model. Note that the AUPR drops ∼0.18
in Test_181, which might be ascribed to the lower posi-
tive sample ratio, or the lower predicted qualities of the
protein structures in this dataset (discussed in Section
‘Impact of the quality of predicted protein structure’).
Since the prediction of GraphSite is the average pre-
dictive scores from the five-trained models in CV, we
also discussed the uncertainty of our method, which is
empirically measured by the standard deviation of these
five scores. As shown in Supplementary Table S2, the
predictions are more accurate when GraphSite is more
confident and vice versa.

In order to demonstrate the advantages of protein
geometric knowledge and the graph transformer model,
we compared GraphSite with a baseline method BiLSTM,
which contains a two-layer bidirectional long short-
term memory network with 256 hidden units and
an MLP module. This model uses the same residue
features as GraphSite and serves as a geometric-
agnostic baseline to evaluate the impact of the spa-
tial information for binding residue prediction. As
shown in Supplementary Table S3, GraphSite yields
higher F1, MCC, AUC and AUPR values, which are
0.064(0.051), 0.068(0.054), 0.021(0.036) and 0.073(0.073)
higher than those of BiLSTM on Test_129(Test_181),
respectively. Figure 2 and Supplementary Figure S1 show
the precision-recall curves and ROC curves of GraphSite
and BiLSTM on the CV, Test_129 and Test_181, where
the curves of GraphSite are largely located above those
of BiLSTM. Here, the k-nearest mask helps GraphSite
focus on the spatially adjacent residues, whereas remote
residues can still be learned since the whole graph
is connected. As shown in Supplementary Table S4,
removal of the k-nearest mask leads to AUPR drops (0.036
and 0.034) on both Test_129 and Test_181.

The performance improvement of GraphSite over BiL-
STM is likely due to its better capability in capturing
long-range contact information. To illustrate this, we
compared the performance of GraphSite and BiLSTM on
amino acids with different number of non-local contacts,
defined as the contacts from the residues that are >20
residues away in sequence positions, but ≤12 Å in terms
of their atomic distances between Cα atoms. Figure 3
shows that GraphSite consistently surpasses BiLSTM on
Test_181 and more importantly, the performance gap
between them enlarges as the non-local contact number
of the amino acids increases. Specifically, the perfor-
mance of GraphSite surpasses BiLSTM by 8.6% in MCC on
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Figure 2. Precision-recall curves of GraphSite and BiLSTM on the CV,
Test_129 and Test_181.

Figure 3. The MCC of GraphSite and BiLSTM on amino acids with different
number of non-local contacts in Test_181.

the amino acids with 0–9 non-local contacts, and the gap
widens to as much as 80.5% on the amino acids with ≥30
non-local contacts. Similar results can also be observed
in Test_129 (Supplementary Figure S2). These compar-
isons highlight the importance of the spatial information,
and the effectiveness of GraphSite in harnessing protein
structural knowledge especially non-local contacts for
DNA-binding residue recognition.

Feature importance
To demonstrate the relative importance of each feature
we adopted, we conducted feature ablation experiments
by using one feature individually or excluding one fea-
ture from the final feature combination. As shown in
Table 2, when using single feature group as node fea-
tures, the highly processed single representation from
AlphaFold2 already gives satisfactory performance with
AUPR of 0.520 in Test_129 and 0.336 in Test_181. On the
other hand, using DSSP solely as node features yields
the worst performance with AUPR of 0.126 in Test_129
and 0.080 in Test_181, indicating that structural prop-
erties of amino acids such as secondary structure and

RSA are insufficient to capture the complicated patterns
of DNA-binding sites. Vice versa, the removal of single
representation from the final feature combination leads
to the greatest performance drops of ∼0.1 in AUPR for
the two-test sets, and the removal of DSSP leads to the
smallest performance drops as expected. In addition,
although both the single representation and evolutionary
features (PSSM and HMM) contain MSA information, the
removal of PSSM and HMM still leads to AUPR drop of
0.021 in Test_129 and 0.037 in Test_181. The performance
reduction when removing any feature group suggests
that the combined feature groups are nonredundant.

Comparison with state-of-the-art methods
We compared GraphSite with three sequence-based
(SVMnuc, NCBRPred and DNAPred) and four structure-
based (COACH-D, NucBind, DNABind and GraphBind)
predictors on Test_129, where GraphSite outperforms
all other methods significantly (shown in Table 3). Con-
cretely, GraphSite surpasses the second-best sequence-
based method DNAPred by 56.3% in MCC and 48.2% in
AUPR, respectively. In addition, GraphSite achieves recall
and precision of 0.665 and 0.460 on Test_129, respectively,
surpassing all other sequence-based methods. It should
be noted that recall and precision are unbalanced
measures strongly depending on thresholds. Though
GraphSite is a sequence-based predictor input with
protein sequences only, GraphSite outperforms the latest
structure-based method GraphBind by 0.020 in MCC and
0.025 in AUPR, respectively. This is reasonable because:
(i) GraphBind only uses the evolutionary features PSSM
and HMM from MSA, whereas our method additionally
employs the informative single representation from
AlphaFold2. (ii) The graph transformer model is proven
to be powerful (Figure 2). (iii) The AlphaFold2-predicted
protein structures used by GraphSite are of high quality
(discussed in Section ‘Impact of the quality of predicted
protein structure’). On the other hand, the performance
of these four structure-based methods will further
decrease when using predicted structures as input
(e.g. AUPR from 0.519 to 0.497 for GraphBind), and the
superiority of our method will be further reflected.
Besides, we also tested GraphSite using the native
structures as input, which will cause performance drop
of AUPR from 0.544 to 0.502, since our method were
trained using predicted structures. However, re-training
the model using native structures will restore the AUPR
to a similar level (0.541) as before.

To further demonstrate the generalization and sta-
bility of our method, we also compared GraphSite
with other methods on our newly built independent
Test_181. Note that this is a more challenging dataset
for our method since we set ‘–max_template_date’ in
AlphaFold2 before the release dates of all proteins in
Test_181. As shown in Table 3, the performance ranks of
these methods are generally consistent as in Test_129,
and GraphSite still outperforms all other methods
significantly, including the structure-based methods
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Table 2. The AUC and AUPR of the 5-fold CV, Test_129 and Test_181 using a single feature individually or excluding each feature in
turn from the final feature combination

Feature CV
AUC

CV
AUPR

Test_129 AUC Test_129 AUPR Test_181 AUC Test_181 AUPR

AF2 Single 0.906 0.557 0.925 0.520 0.908 0.336
Evo 0.864 0.417 0.888 0.381 0.854 0.232
DSSP 0.691 0.173 0.721 0.126 0.686 0.080
-AF2 Single 0.886 0.497 0.913 0.452 0.882 0.263
-Evo 0.911 0.568 0.928 0.523 0.909 0.332
-DSSP 0.911 0.573 0.929 0.532 0.909 0.347
GraphSite 0.915 0.589 0.934 0.544 0.917 0.369

Note: AF2 Single denotes the single representation produced by AlphaFold2, and Evo denotes the evolutionary feature groups PSSM and HMM. Bold fonts indicate
the best results.

Table 3. Performance comparison of GraphSite with state-of-the-art methods on Test_129 and independent Test_181

Dataset Method Spe Rec Pre F1 MCC AUC AUPR P-values of AUPR

Test_129 SVMnuc 0.966 0.316 0.371 0.341 0.304 0.812 0.302 6.6 × 10−14

NCBRPred 0.969 0.312 0.392 0.347 0.313 0.823 0.310 2.2 × 10−11

DNAPred 0.954 0.396 0.353 0.373 0.332 0.845 0.367 2.3 × 10−11

COACH-Da 0.958 0.367 0.357 0.362 0.321 0.710 0.269 2.7 × 10−11

NucBinda 0.966 0.330 0.381 0.354 0.317 0.811 0.294 9.2 × 10−12

DNABinda 0.926 0.601 0.346 0.440 0.411 0.858 0.402 1.9 × 10−10

GraphBinda 0.941 0.684 0.422 0.522 0.500 0.928 0.519 6.1 × 10−5

COACH-Db 0.955 0.328 0.318 0.323 0.279 0.712 0.248 3.1 × 10−11

NucBindb 0.964 0.322 0.366 0.343 0.304 0.809 0.284 8.0 × 10−13

DNABindb 0.952 0.487 0.389 0.433 0.395 0.832 0.391 1.1 × 10−11

GraphBindb 0.948 0.625 0.434 0.512 0.484 0.916 0.497 2.6 × 10−7

GraphSite 0.950 0.665 0.460 0.543 0.519 0.934 0.544 N/A
Test_181 NCBRPred 0.964 0.259 0.241 0.250 0.215 0.771 0.183 7.2 × 10−11

SVMnuc 0.960 0.289 0.242 0.263 0.229 0.803 0.193 7.1 × 10−11

DNAPred 0.948 0.334 0.223 0.267 0.233 0.802 0.230 6.2 × 10−10

COACH-Da 0.971 0.254 0.280 0.266 0.235 0.655 0.172 2.8 × 10−12

NucBinda 0.960 0.293 0.248 0.269 0.234 0.796 0.191 7.6 × 10−11

DNABinda 0.904 0.535 0.199 0.290 0.279 0.825 0.219 4.6 × 10−10

GraphBinda 0.933 0.624 0.293 0.399 0.392 0.904 0.339 3.9 × 10−5

COACH-Db 0.971 0.239 0.266 0.251 0.220 0.668 0.169 3.4 × 10−12

NucBindb 0.959 0.288 0.240 0.262 0.227 0.798 0.186 5.5 × 10−11

DNABindb 0.941 0.392 0.229 0.289 0.259 0.803 0.208 2.8 × 10−10

GraphBindb 0.949 0.505 0.304 0.380 0.357 0.893 0.317 7.4 × 10−7

GraphSite 0.958 0.517 0.354 0.420 0.397 0.917 0.369 N/A

Note: The results of GraphBind were obtained from its standalone program, while the predictions by other competitive methods were generated from their web
servers. Bold fonts indicate the best results. aUsing native protein structures. bUsing predicted protein structures.

that use native protein structures. On the other hand,
when using predicted structures as input, our method
surpasses the best structure-based method GraphBind
by 16.4% in AUPR and 11.2% in MCC, respectively. This
suggests that our method is practical and much more
powerful for the situation where only protein sequences
instead of native structures are available.

Impact of the quality of predicted protein
structure
Since GraphSite employs predicted protein structures
for geometric deep learning, the predicted quality of
AlphaFold2 should be crucial to the downstream DNA-
binding site prediction. We calculated the average global
distance test (GDT; [62]) between the native structures
and the predicted structures by AlphaFold2 in the three
datasets through SPalign [63]. The average GDT for
Train_573 and Test_129 are 0.86 and 0.85, indicating
that AlphaFold2 can make accurate structure predictions
when similar structure templates are available. However,

the predicted quality drops when we set the restriction
of the max available date of templates in AlphaFold2.
Concretely, the GDT drops to 0.71 for the independent
Test_181, which partly explains why the performance
of GraphSite decreases in this dataset. For further
demonstration, Figure 4 shows the predicted quality
(measured by GDT) of AlphaFold2 and the per-protein
AUPR on Test_181 for GraphSite (blue scatters). Moreover,
we sorted the proteins in Test_181 according to the GDT
and divided them into nine bins equally to compute
the average GDT and AUPR for each bin (red line).
As expected, GraphSite shows a positive correlation
between the predicted quality of AlphaFold2 and the
AUPR. A closer inspection shows that the top-30%
proteins with the highest GDT (average GDT = 0.92)
correspond to an average AUPR of 0.525 predicted by
GraphSite. On the other hand, the bottom-30% proteins
with the lowest GDT (average GDT = 0.46) correspond to
an average AUPR of 0.287, which is significantly lower
than that of the top-30% proteins (P-value = 9.0 × 10−5)
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Figure 4. The positive correlation between the predicted quality of
AlphaFold2 measured by GDT and the performance of GraphSite mea-
sured by AUPR on Test_181. The blue scatters denote the per-protein GDT
and AUPR, while the red line denotes the average GDT and AUPR for each
bin after sorting all proteins according to GDT and dividing them into
nine bins.

according to Mann–Whitney U test [64]. We also observed
a negative correlation between the predicted error
of AlphaFold2 at amino acid level (measured by the
distance between the native and predicted amino
acid after structure alignment) and the performance
of GraphSite (Supplementary Table S5). These results
suggest the importance of the predicted quality of
protein structure for DNA-binding site prediction.

GraphSite learns effective latent representations
of residues
In this section, we visualized the raw feature vectors
and the latent feature vectors learned by GraphSite on
Test_181. For a target residue, the initial node feature
vector consisting of MSA information and structural
properties with the size of 438 serves as the raw
feature vector. The latent feature vector learned by
GraphSite with the size of 128 is the concatenation of
the embedding vectors from the two-graph transformer
layers. t-SNE [65] was applied to project the high-
dimensional feature vectors into the two-dimensional
space. Figure 5A and B illustrate the distributions of
samples encoded by raw feature vectors and latent
feature vectors, respectively. As shown in Figure 5A, the
binding and non-binding residues overlap and are indis-
tinguishable, whereas Figure 5B shows that most binding
residues are clustered together and separated from
most non-binding residues. These results demonstrate
that the latent representations learned by GraphSite
effectively improve the discriminability of binding and
non-binding residues.

Case study
To visualize the superiority of our method, we selected
mycobacterial DNA polymerase LigD (PDB ID: 6SA0,
chain A) from Test_181 for illustration. Figure 6 shows

the DNA-binding site prediction results of GraphSite (A)
and the geometric-agnostic baseline method BiLSTM (B).
In this example, there are 32 DNA-binding residues over
a total of 333 residues. GraphSite predicts 48 binding
residues in which 24 are TP, leading to an F1 of 0.600,
MCC of 0.562 and AUPR of 0.554. By comparison, BiLSTM
predicts 52 binding residues in which only 20 are TP,
leading to a lower F1 of 0.476, MCC of 0.421 and AUPR
of 0.367. Besides, as shown in Figure 6A, the false-
positive binding residues (colored in red) predicted by
GraphSite are mostly around the interface of protein–
DNA interaction or close to the DNA structure. In
addition, the results of the structure-based method
GraphBind using the predicted structure of this protein
can be found in Supplementary Figure S3. Visualization
of another case (PDB ID: 6YMW, chain B) can also be
found in Supplementary Figure S4.

Discussion and conclusion
Identifying protein–DNA binding sites is crucial for
understanding biological activities and designing novel
drugs. Existing sequence-based methods only consider
contextual features of the sequential neighbors, leading
to their limited predictive performance, while the
structure-based methods are not applicable to most
proteins that do not have known tertiary structures.
Trained with the predicted structure models and the sin-
gle representations from AlphaFold2, GraphSite achieves
great performance (surpassing the best structure-
based method) using only protein sequences, which
simultaneously solves the limitations of the current
sequence-based and structure-based methods. The
graph transformer technique adopted by GraphSite is
able to refine the geometric characteristics by taking
the local structural context topology into account, while
most of the competitive methods first extract structural
characteristics and then feed these features into some
supervised classifiers, separating the feature engineering
and classification. In summary, the superiority of
GraphSite benefits from two aspects: (i) the predicted
structures from AlphaFold2 are of high quality and
the single representations are informative and (ii)
the structure-aware graph transformer is an effective
algorithm to learn the patterns for binding residue
prediction.

With the development of sequencing techniques,
many DNA-binding proteins have been detected, and
such discoveries require confirmations in biological
experiments. Since the whole chain screening is time-
consuming and expensive, the predictive methods can
help narrow down potential binding sites, as indicated
in our previous collaborative study [10] to validate
nucleic acid binding residues in JAK2 kinase through
computational predictions and wet experiments. On
the other hand, these predictions can also provide
hypotheses and insights for the mechanisms of many
disease-causing gene mutations, such as the THOC2
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Figure 5. Visualization of the distributions of samples encoded by raw feature vectors (A) and latent feature vectors learned by GraphSite (B) on Test_181
using t-SNE.

Figure 6. Visualization of one example (PDB ID: 6SA0, chain A) from Test_181 predicted by GraphSite (A) and the geometric-agnostic baseline method
BiLSTM (B). TP, FP and FN are colored in green, red and yellow, respectively.

mutations which affect mRNA export [9]. In novel drug
design, the binding site prediction can be used to predict
druggability [13] or used as condition of generative
models for de novo molecule design [14].

Our GraphSite model still has a few limitations. First,
the performance of GraphSite is largely affected by the
predicted quality of AlphaFold2. This may be solved by
adding other informative sequence-derived features or
building heterogeneous graphs through integrating pro-
tein primary sequences to increase the model robust-
ness to structure predicted quality. Another way is to
keep all five-relaxed models from AlphaFold2 instead
of only retaining the model with the highest predicted
LDDT score to perform data augmentation. Second, our
graph transformer algorithm only uses the protein dis-
tance matrices as masks in the self-attention step now,
and modifications might be made to add the pairwise
residue distances as biases to the attention scores. Our
framework can also be explored to handle protein graphs

with edge features constructed by residue distance, angle
or the pair representation from AlphaFold2. Third, our
method only considers the protein information to pre-
dict potential DNA-binding sites, thus cannot predict the
specific binding pattern given a known DNA sequence
or structure. We left these above improvements of this
longstanding challenge to future work.

In conclusion, this study proposes a geometric-aware
framework called GraphSite for DNA-binding site predic-
tion, where we predict protein structures from sequences
using AlphaFold2 and employ graph transformer net-
work to learn the amino acid representations. GraphSite
shows preferable performance than other sequence-
based and structure-based methods in comprehensive
evaluations. We suggest that our method could provide
useful information for biologists studying protein–
DNA binding patterns or pathogenic mechanisms of
mutations, and chemists interested in targeted drug
design. In the future, we would further improve our graph
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transformer architecture and integrate multi-task learn-
ing [66] to extend our method to various fields, including
predicting protein binding sites with RNA and small
ligands, or protein functional sites such as methylation
and phosphorylation.

Key points

• Existing sequence-based methods for identifying
protein–DNA binding sites only consider contex-
tual features of the sequential neighbors, which
are limited to capture spatial information.

• GraphSite is the first sequence-based method
to predict protein–DNA binding sites based on
the predicted structures from AlphaFold2, where
structure-aware graph transformer is employed
to capture the protein structural context topol-
ogy.

• GraphSite shows preferable performance than
state-of-the-art sequence-based and structure-
based methods in two independent datasets.

Data availability
We provide the datasets, the predicted structures, and
the source codes along with the pre-trained models of
GraphSite at https://github.com/biomed-AI/GraphSite.
The GraphSite web server is freely available at https://
biomed.nscc-gz.cn/apps/GraphSite.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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