Briefings in Bioinformatics, 2022, 1-11

https://doi.org/10.1093/bib/bbab570
Problem Solving Protocol

OXFORD

A robust and scalable graph neural network for accurate
single-cell classification

Yuansong Zeng(»), Zhuoyi Wei, Zixiang Pan, Yutong Lu and Yuedong Yang

CorrespondingauthorsyYuedongYang) School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China. Tel.: +86 020-37106046;
Fax: 486 020-37106020; E-mail: yangyd25@mail.sysu.edu.cn. Yutong Lu, E-mail: yutong.lu@nscc-gz.cn

Abstract

Single-cell RNA sequencing (scRNA-seq) techniques provide high-resolution data on cellular heterogeneity in diverse tissues, and
a critical step for the data analysis is cell type identification. Traditional methods usually cluster the cells and manually identify
cell clusters through marker genes, which is time-consuming and subjective. With the launch of several large-scale single-cell
projects, millions of sequenced cells have been annotated and it is promising to transfer labels from the annotated datasets to
newly generated datasets. One powerful way for the transferring is to learn cell relations through the graph neural network (GNN),
but traditional GNNs are difficult to process millions of cells due to the expensive costs of the message-passing procedure at each
training epoch. Here, we have developed a robust and scalable GNN-based method for accurate single-cell classification (GraphcCS),
where the graph is constructed to connect similar cells within and between labelled and unlabeled scRNA-seq datasets for propagation
of shared information. To overcome the slow information propagation of GNN at each training epoch, the diffused information is pre-
calculated via the approximate Generalized PageRank algorithm, enabling sublinear complexity over cell numbers. Compared with
existing methods, GraphCS demonstrates better performance on simulated, cross-platform, cross-species and cross-omics scRNA-seq
datasets. More importantly, our model provides a high speed and scalability on large datasets, and can achieve superior performance
for 1 million cells within 50 min.

Keywords: single-cell RNA sequencing, single-cell classification, batch effects, scalable graph neural network, virtual adversarial
training

Introduction noises among scRNA-seq data (e.g. dropout; [15, 16]). In

Single-cell RNA sequencing (scRNA-seq) technologies
promise to provide high-resolution insights into the
complex cellular ecosystem [1-3] by measuring gene
expression in millions of single cells from multiple
samples [4-8]. Several large-scale single-cell projects, e.g.
the human cell atlas (HCA), have been established as a
result of the decreasing costs in scRNA-seq technologies
[9, 10]. In scRNA-seq studies, an essential step is to
identify the sequenced cells through the sequenced gene
expression [11], which is usually obtained through cell
clustering and subsequently manually identifying cell
clusters through marker genes [12]. This process is time-
consuming and subjective.

With the tremendous increase of well-annotated
scRNA-seq datasets, it is feasible to transfer well-defined
labels (cell types) of existing single-cell datasets to
newly generated single-cell datasets [13, 14]. However,
the knowledge transferring is challenging due to various

addition, batch effects exist between single-cell datasets
because they are usually collected from different
platforms [17, 18], tissues or species [19, 20]. Early
methods were developed to search for similar cells
in the reference datasets with well-defined labels. For
example, scmap [21] measures the maximum similarity
between well-annotated cells of reference data and
unknown query data to annotate cell types. SingleR [22]
measures the similarity by calculating the correlation
between gene expression. CHETAH [23] identifies the
unknown cells using the high cumulative density of
each cell type correlation distribution. OnClass labels
cells according to the most similar cells annotated in the
Cell Ontology [24]. CelliD is a clustering-free statistical
method for extracting the gene signatures of each cell
from scRNA-seq data, and used the gene signatures as
unique cell identity cards to align with annotated cells
[25]. CelliD provides two modes: CelliD (C) by aligned
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with cells and CelliD(G) by aligned cell clusters in the
reference dataset. Obviously, these methods consider
only pairwise similarity and have ignored the nonlinear
relations between annotated cells. For this reason,
several methods train classifiers using the labeled
datasets or reference atlas, and make predictions on
query datasets. For example, scPred [26] trains a support
vector machine by using the features obtained from
singular value decomposition. SingleCellNet [27] applies
an ensemble of boosted regression trees and a Random
Forest classifier to annotate cells. Seurat [28] is a com-
monly used toolkit in single-cell studies, which applies
a specialized method to transfer labels to unknown cell
types. scClassify is a supervised classification framework
for multilevel cell type annotations, relying on cell type
hierarchies from single or multiple reference datasets
[29]. scANVI [30] is a semi-supervised variant of scVI
[31], which annotates cell types in the query dataset by
leveraging all available cell state annotations. scNym is a
semi-supervised deep learning classification framework
that uses an adversarial neural network to transfer cell
identity annotations from reference to query [32]. In
addition, many methods [33-39] have been developed
for different scenes, e.g. scMatch and scID. However, all
these methods still exhibit limited performance, partially
due to their ignoration of higher-order relations between
cells.

In fact, the high-order representation and topological
relations could been naturally learned by the graph
neural network (GNN), and GNN have been proven with
improved performance in scRNA-seq data analyses such
as imputation and clustering [40-42]. ScGCN [43] is
currently the only GNN method for annotating cells.
The method is based on the GNN architecture proposed
by Kipf and Welling [44], which relies on an expensive
message-passing procedure to propagate information
and has to include the full-batch during training. Thus,
the huge costs of computations and memory prevent its
applications to large datasets, especially with the arrival
of datasets containing millions of cells [45, 46].

To solve the scalability of GNN, many studies have
been proposed. For example, Chen et al. [47] proposed a
scalable GNN model, which could be efficiently trained
with mini-batches using GPU. One critical point is its
approximation of the diffused information through the
bidirectional propagation by the Generalized PageRank
algorithm [48], which avoids iterative information dif-
fusion in each training epoch. In addition, the use of
mini-batch training reduces the requirement of large
GPU memory from full-batch training. Thus, the method
could be used on large graphs with billions of edges.
Another issue for GNN is to accurately construct the
cell graph among millions of cells. Traditional methods
such as Cosine similarity, KNN, UMAP [49] and Annoy
[50] (https://github.com/spotify/annoy) are widely used
for constructing the cell graph by measuring the cell-
to-cell similarity in single-cell RNA-seq data [51-53], but
they do not take account of the batch effects between

datasets. To consider the batch effects, several methods
captures the cell relations through scGCN [54] constructs
the cell graph using CCA-MNN, a combination of canon-
ical correlation analysis (CCA; [55]) and the mutual near-
est neighbor (MNN; [56]). Conos [57] relies on multiple
plausible inter-sample mappings to construct a graph
connecting all measured cells. BBKNN [58] provides an
extremely fast and scalable neighborhood construction
method across all batches. The runtimes of BBKNN scale
linearly with the increase in number of cells through
integrating the approximate neighbor detection tech-
nique in algorithm Annoy.

Here, we present a scalable GNN learning model for
cell annotations by constructing the graph via BBKNN,
and pre-calculate the diffused features via the graph
bidirectional propagation algorithm (GBP). Concretely,
GBP propagates information among similar cells within
and between labeled and unlabeled datasets, resulting
in significant gains of speed and scalability of GNN while
efficiently removing the batch effects. The integrated
features from the GBP module are then inputted to a
classification neural network to annotate cells for the
query dataset. To better estimate the decision boundary
between different cell types, we also use the virtual
adversarial training (VAT) loss [59] to improve model
generality. Our method was demonstrated to outperform
other methods on both simulated datasets and real
datasets across species, platforms and omics. More
importantly, the model can be extended to large-scale
datasets in a reasonable time scale.

Materials and methods
Datasets

We benchmarked our method through multiple sim-
ulated and real scRNA-seq datasets. The simulated
datasets were generated by the R package ‘splatter’,
and the real datasets were obtained from previous
references. As shown in Table 1, the real scRNA-seq
datasets included four paired cross-species datasets,
eight cross-platform datasets (including a multiple-
reference dataset), two paired cross-omics datasets, two
paired unknown cell type datasets (tumor datasets), two
paired minor cell type datasets and four paired bench-
mark datasets. The data preprocessing was detailed in
Supplementary Note 1.

The architecture of GraphCS

This study proposed a robust and scalable GNN model
to annotate cell types in a semi-supervised manner. As
shown in Figure 1, the GraphCS model consists of three
modules: graph construction, GBP and classification
modules.

Graph construction module

The cell graph G is constructed by linking cells with sim-
ilar gene expressions within and between the reference
and query datasets. Here, we construct the graph G by
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Figure 1. The schematic overview of GraphCS for cell type classification. GraphCS consists of graph construction, GBP and classification modules. The
graph construction module constructs the cell graph according to gene expression similarity through the BBKNN algorithm. Through the graph, the GBP
module diffuses feature information among cells, which is then inputted into the classification module used to classify cells.

BBKNN with default parameters, which provides a fast
and scalable neighborhood construction method across
all batches. Briefly, for each cell ¢, three most similar
cells are selected with the lowest Euclidean distances
from each of Ny, batches (including the batch itself). The
connected cell graph is then inputted into UMAP for
recalculating connectivity scores, through which neigh-
bored cells are trimmed so that each cell contains at
most 30Ny, neighbors (edges). The constructed cell graph
is then input to the following GBP module.

GBP module

To acquire high scalability, GNN is estimated through
the Generalized PageRank algorithm, which is further
approximated by the GBP Algorithm.

Generalized PageRank algorithm
To acquire high scalability of GNN, the feature propa-
gation is pre-calculated through Generalized PageRank
matrix as:
L
P=> w,(D"'AD7)" X (1)
=0

where w, is the weight of the ¢th order convolution
matrix,Aand D are the adjacency matrix and diagonal
degree matrix of graph G, respectively, X is the feature
matrix and y is the convolution coefficient. This strategy
has been proven to well estimate feature propagation
[60], and we followed the study to set w, = a(1— u)z for
constant decay factor a € (0, 1).

The GBP algorithm

To reduce the time complexity, the Generalized PageRank
is further approximated with the GBP that combines
the Monte-Carlo Propagation and Reverse Push Propaga-
tion. GBP has been proven to provide accurate unbiased
estimator [47]. Concretely, we use the following formula
as an unbiased estimator for the Generalized PageRank

matrix P defined in Equation (1).

L ¢
prxd _ ZWZDV,(Q(Z) + Zs(l—t)R(t)) 2)

=0 t=0

where n is the total number of cells in the reference and
the query data, and d is the size of gene features. Q and
R are respectively the reserve matrix and the residue
matrix originated from the Reverse Push Propagation
algorithm, and S records the fraction of random walks
from the Monte-Carlo propagation. The detailed informa-
tion and proof of Equation (2) can be found in ref. [47].

Classification module

The feature matrix P"*? obtained from the GBP module
was input to our classification module to make predic-
tions of cell types. Here, the module is composed of the
neural network classification, based on which the virtual
adversarial loss is added to improve the generality.

Neural network classification: Our classification module
contains a neural network feature extractor E with mul-
tiple hidden layers and a label predictor F with a Softmax
output layer. The input of classification module includes
reference gene expression matrix X, = [x,---xp,. ] € prrxd
with the correspondinglabels Y, = {y/}!", and query gene
expression matrix X, = [x{, - xh,] € P"*?  We optimize
the classification module using the following standard
cross-entropy loss:

Lot =~ 3 VP (E () @

where y;, € R®**! is one-hot encoded vector of y and CL
is the number of class.

Virtual adversarial training: VAT is applied to improve
the generalization of the classification module by
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incorporating the information of data distribution from
query data. VAT is a data augmentation technique
without prior label information [61]. VAT tries to make
predictions invariant to small perturbation by minimiz-
ing the distance between the input and a perturbed
version of the input. Then the model is robust to small
noises or perturbations in the inputs. We compute VAT’s
loss function as the following:

Lyar (Xq,0) = Dxe [P (Yq1Xq,0) , P (YalXq +Tvar, 6)]  (4)

Tvat = argmaxDgr [p (Y41Xq,0) ,p (YqlXq + AX)]  (5)
AX;[1Axlp <
where 1,4t optimizes the difference between the model
output of the non-perturbed input and the perturbed
input, 6 is parameter of the model, Ax is a Gaussian
noise and Y, is predicted by the label predictor F. The
hyper-parameter e is the norm constraint for the adver-
sarial direction, and we set ¢ to 0.1 following the previ-
ous study [59]. The output distribution is parameterized
asp(YqlXg,0), and Dy, [e,e] is Kullback-Leibler divergence.
So, the total loss function of classification module as
the following:

LoveraH = LCE + )\LVAT (6)

where \ is the hyper-parameters (set as 0.1) to balance
the contribution of VAT to the total loss function.

Hyper-parameters setting

The GraphCS was implemented in PyTorch and C++. For
GBP module, we set «=0.05 and y =0.5 for all datasets.
For the classification module, the dimensions of hidden
layers were set to [256, 256]. The training batch size was
generally set as 128, whereas the sizes was increased for
large datasets (1024 and 4096 for above 10 000 and 50 000
cells, respectively) to further reduce the training time of
each epoch on large datasets. The models were optimized
through the Adam optimizer with alearning rate of 0.001,
a maximum of 1000 epochs, and early stopping with
a patience of 20 epochs. Since the performance of our
model was affected by the constructed cell connections
(inter-edges) by BBKNN between two batches, we decided
the final number of inter-edges through an empirical
parameter edge_ratio, the ratio of selected inter-edges
relative to the number of cells in the larger batch. The
edge_ratio was set as 2 in default and 0.5 for difficult
datasets with large batch effects (e.g. cross-omics data)
by trials and tests. All results reported in this paper were
conducted on Ubuntu 16.04.7 LTS with Intel® Core (TM)
17-8700K CPU @ 3.70 GHz and 256GB memory, with the
Nvidia Tesla P100 (16G).

Benchmarking classification methods

To evaluate the performance, we compared GraphCS
with other tools including: Seurat V3, scmap, scPred,
CHETAH, SingleR, SingleCellNet, scGCN, onClass, scClas-
sify, scNym, scANVI and CelliD. For Seurat V3, we applied
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both the Principal component analysis (PCA)-based and
Canonical correlation analysis (CCA)-based version to
evaluate whether the aligned data was benefit for clas-
sification. We used the default hyper-parameters recom-
mended in the origin paper for the competing methods.

Evaluation metrics: We evaluated the classification per-
formance for all methods using the accuracy, the pro-
portion of correctly annotated cells. For each dataset,
we considered the cell type annotations provided by the
original dataset as the ground truth.

Results
Performance on simulated datasets

To investigate the performance of GraphCS under
different magnitudes of batch effects, we generated the
simulated scRNA-seq data by setting different values
of ‘batch.facScale’ through the R package ‘Splatter’.
As shown in Figure 2A, the accuracies of all methods
decreased with the increase of batch.facScale since
higher batch.facScale represented larger batch effects,
ie. higher annotating difficulty. Overall, our method
consistently achieved stable and the best performance
with the accuracies only slightly changed from 1.0 to
0.97 when increasing batch.facScale from 0.2 to 1.6.
By comparison, scGCN, the second-best method, had
significant drop in accuracies when batch.facScale was
greater than 1.0, and a sharp drop from 0.93 to 0.88 when
increasing batch.facScale from 1.4 to 1.6. The accuracies
of SingleR and scPred were larger than 0.9 when the value
of batch.facScale was less than 0.4, but their accuracies
significantly dropped afterwards and were only 0.45
and 0.4, respectively when batch.facScale=1.6. For two
Seurat methods, Seurat-PCA was more sensitive from the
batch.facScale value. Seurat-PCA had higher accuracies
than Seurat-CCA at batch.facScale of <1.0, but lower
accuracies at greater batch.facScale values. This is
likely because Seurat-CCA overcorrected the batch
effects at small batch.facScale values. scNym performed
better than scANVI in terms of average accuracy, but
both of them were worse than scGCN. By comparison,
GraphCS always outperformed the competing methods
in different magnitudes of batch effects. The superior
performance showed that GraphCS could effectively
reduce performance degradation brought by batch
difference.

Performance on real datasets

We further evaluated the performance of GraphCS on
different types of real datasets. For the cross-platform
datasets, we tested on seven paired cross-platform
datasets. As shown in Figure 2B, the average accuracy
of GraphCS (mean Acc=89%) was 2% higher than the
second-ranked method scNym (mean Acc=87%) and
consistently outperformed other competing methods.
Seurat-PCA, SingleCellNet, CelliD (C), SingleR, scANVI,
scGCN and scmap ranked the 3rd, 4th, 5th, 6th, 7th, 8th
and 9th in terms of the average accuracy, respectively. In
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Figure 2. The performance of GraphCS on simulated, cross-platform and cross-species datasets: (A) the average and mean square error values of cell type
prediction accuracy on five groups of simulated scRNA-seq data at different batch.facScale values; (B) the boxplots of cell type prediction accuracy of
all methods based on the cross-platform datasets; (C) the accuracy matrix of each cell type identified by different methods on the mouse retina dataset
and (D) the performance of GraphCS on four paired cross-species datasets. Baron_human-Baron_mouse represents the Baron human pancreas dataset
as the reference to annotate the Baron mouse pancreas dataset. The rest results represent that the Baron mouse pancreas dataset as the reference to
annotate respectively the Baron, Segerstolpe and the combination human pancreas datasets (the combination contained five human pancreas datasets,
including Baron et al., Wang et al., Xin et al., Muraro et al. and Segerstolpe et al.). Each bar represents the accuracy of each method.

comparison with Seurat-PCA, Seurat-CCA did not benefit
from aligning and integrating the datasets. CHETAH,
scmap, CelliD (G) and scGCN achieved similar average
accuracy. Though scGCN took a similar technique to ours,
the average accuracy of scGCN was lower than GraphCS.
It is likely because the scGCN constructed graphs
containing fewer edges (averagely one to two times lower
than ours) and did not fully utilized the advantages of
GNN. ScPred and onClass achieved much lower perfor-
mance than other methods. To highlight the comparison
regarding specific cell types, we used the heatmap
to show the accuracy of each cell type annotated by
different methods on the mouse retina dataset. As shown
in Figure 2C and Supplementary Figure S1. CelliD(G)
and scmap incorrectly assigned most of bipolar cells.
SingleR, SingleCellNet, Seurat-PCA, CHETAH, CelliD(C),
SsCANVI, scClassify and scNym incorrectly assigned
most of cones cells. In contrast, our method correctly
discriminated most cell types. In addition, we performed

an experiment by using multiple reference datasets
(Supplementary Figure S2), and our model achieved
comparable accuracy with CelliD and outperformed
other methods.

For the cross-species datasets, we evaluated all
methods on four paired cross-species datasets. We
did not include scPred since it raised exceptions on
cross-species datasets. As shown in Figure 2D, GraphCS
achieved an average accuracy of 0.96, respectively 4 and
7% higher than those by the second-ranked method
scGCN (0.92) and the third-ranked method scmap
(0.89). The left methods are ordered as: SingleCellNet,
Seurat-CCA, scClassify, CelliD(C), CelliD(G), Seruat-PCA,
scNym, SingleR, scANVI and CHETAH. Specifically, in
the combination dataset with only seven T cell and
13 Schwann types, GraphCS could still annotate them
accurately (Supplementary Figure S3A). As shown in the
Sankey diagram (Supplementary Figure S3B), the much
smaller number of cells in the reference data than the
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Figure 3. UMAP visualization of three paired cross-species datasets, based on the aggregated data by different methods. The Baron mouse pancreas
dataset is the reference for all query datasets. First row: the Baron human pancreas dataset as the query data. Second row: the Segerstolpe human
pancreas dataset as the query data. Third row: we combined datasets Baron et al., Wang et al, Xin et al., Muraro et al. and Segerstolpe et al. as the

query data.

query data suggests the capability of our model in small
reference data.

To interpret our method, we visualized the cells in
the aggregated reference-query data of cross-species. We
compared Seurat-CCA, scGCN and GraphCS since they
provided the aggregated data and took account of batch
effects between datasets. As shown in Figure 3, cells in
the raw data were not separated well due to the substan-
tial noise and batch effects. For example, in the dataset
Baron (mouse)-Baron (human), beta cells were separated
into two clusters, whereas alpha and delta cells gathered
together. Although Seurat and scGCN could discriminate
most of the cell populations on all cross-species datasets,
they could not explicitly distinguish a few cell types,
such as beta and delta cells. By comparison, GraphCS
could clearly separate most of the cell populations in all
scenarios, indicating its ability to deal with strong batch
effects between species.

To evaluate whether GraphCS can classify these
unknown cell types, we trained it on two paired tumor
datasets, where malignant cells were included in the
query data but not in the reference data. This is practi-
cally important since the query data may contain novel
cell types not appearing in the reference dataset, and
classifiers should identify the novel unknown cells, or
output low classification confidence scores for unknown
cell types. We followed the previous study [62] to evaluate
all methods. Specifically, we evaluated each method by
its precision (the percentage of correctly annotated cells
for known cell types) under a given FPR, the percentage
of falsely assigned unknown cells. For this purpose,

we selected a threshold of predicted score output by
each method, so that 1-FPR of unknown cell types are
annotated as unknown, and all cells with scores below
the threshold are defined as unknown. The precision
was defined as the number of cells assigned with correct
known cell types and with scores above the threshold,
divided by the total number of cells with known cell
types. As shown in Supplementary Figure S4, at the
FPR of 0.05, GraphCs, together with scGCN and Seurat,
achieved the highest average precision (~68%). The next-
level methods are scANVI, SingleCellNet, scNym, scPred
and CHATAH with an average precision of 0.60, 0.56, 0.43
and 0.37, respectively. SingleR and scmap performed
worst in terms of precision. The results indicated the
advantage of our model in identifying unknown cell
types. The trend was similar at the FPR of 0.1. We did
not include onClass because it could not run without a
pretrained model, or CelliD and scClassify because they
did not return the confidence scores.

To evaluate the performance for transferring labels
across different types of omics, we performed experi-
ments on two cross-omics datasets. As recommended
in Seurat, we first converted the peak matrix of the
SCATAC-seq data to a ‘gene activity matrix’ by adding the
counts in the gene body +2 kb upstream, representing a
synthetic scRNA-seq dataset to leverage for annotation.
As shown in Figure 4, our model achieved the highest
accuracy of 0.95 that was 5% higher than the second-
ranked method scGCN. SingleR, scClassify and CelliD
(C) achieved slightly lower but reasonable accuracies
of 0.88, 0.85 and 0.74, respectively. scPred, scNym and
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Figure 4. The performance of different methods on cross-omics datasets.

SingleCellNet did not perform well on cross-omics
datasets with accuracies below 0.5. The results have
shown that our model performed well on cross-omics
datasets.

To evaluate the performance of our model in the clas-
sification of minor cell types, we compared it with com-
peting methods on two paired datasets of three to four
T cell subtypes. As shown in Supplementary Figure S5,
GraphCS performed the best by 1 and 2% higher than
the second-ranked method Seurat-PCA in terms of aver-
age accuracies of all cells and T cell subtypes for all
datasets. To further examine the ability of our model
when fewer cell types are in the query dataset than the
reference dataset, we employed the reference dataset
GSE120575 containing 14 cell types (including four T
cell types CD8Tcm, CD4Tn, CD8Tem and CD8Tex) and
the query dataset GSE148190 containing eight cell types
(including four T cell types CD8Tcm, CD4Tn, CD8Tem
and CD8Tex). By recursively keeping only one T cell type
and removing other T cells on the query dataset, the four
experiments by our model produced an average accuracy
of 0.68 for all T cell types, essentially the same as 0.66 by
the direct test on GSE148190. The results indicate that
our model can apply to reference datasets containing
many cell types. We further evaluated our model on
four paired datasets from HCL, MCA and TM. As shown
in Supplementary Figure S6, our model consistently per-
formed the best with average accuracies at least 2%
higher than other methods. These results indicated the
efficiency and robustness of our model.

We also investigated the contribution of each compo-
nentin GraphCs through ablation studies. The GBP mod-
ule made the biggest contribution because its removal
of batch effects between datasets, and the VAT module
made small but significant contribution. Both modules
are critical to our model. The results were detailed in
Supplementary Note 2.

Running time evaluation

To evaluate the runtimes of all methods and their
scalability with the increase in the number of cells, we

sampled the mouse brain dataset in a stratified way (i.e.
preserving population frequencies) to 6, 12, 36, 60, 96
and 120% of the original number of 833 206 cells and
selected the top 2000 highly variable genes as the input
features. As shown in Figure 5, dramatic differences of
runtimes could be observed between these methods with
increases in the number of cells. GraphCS was faster
than all other methods except scmap. GraphCS showed
a high scalability with about linear growth of runtimes
with the number of cells: 1008s for 500K cells and 2669s
for 1000K cells. scNym and scANVI achieved similar
time costs to GraphCS. This was six times faster than
CHETAH. Seurat-PCA was close to our method in speed
for dataset with 50K cells, but the runtime dramatically
increased for large datasets: 42 times slower than our
method when processing 1 million cells. Seurat-CCA was
consistently slower than Seurat-PCA, and SingleCellNet
was the slowest. Although GraphCS was two times slower
than scmap, GraphCS consistently achieved average
accuracies of 20% higher than scmap. In addition, under
the default parameters, scmap could not process the
dataset with >800K cells. scGCN cannot either process
datasets with >500K cells because current GPU memory
cannot support the full-batch training. In contrast, our
model could deal with large datasets with > 1 million
cells because the GBP module used in our model supports
training with mini-batches. When the number of cells
was less than 300K, scGCN was averagely 10 times slower
than GraphCS mainly because their used CCA-MNN
for graph construction is significantly slower than our
used BBKNN. The results demonstrated that our model
could be extended to large-scale datasets in linear time
complexity.

Discussion

With the tremendous increase of scRNA-seq datasets,
it is feasible to transfer well-defined labels of existing
single-cell datasets to newly generated single-cell
datasets. In this study, we proposed a robust and scalable
graph-based artificial intelligence model, which enables
training the well-labeled single-cell data to annotate
new data through robust knowledge transferring. We
have demonstrated that GraphCS achieves significant
improvements compared with 14 existing annotation
methods in terms of performance and efficiency using
the simulated, cross-platform, cross-species and cross-
omics scRNA-seq datasets. Meanwhile, our model can be
extended to large dataset in linear time complexity.
Although several commonly used cell annotation
algorithms, such as Seurat and SingleR, also pos-
sess knowledge transferring functionalities, our model
achieved superior results in terms of both performance
and efficiency. Though another method, scGCN is also
using the GNN method to annotate cells, the method
relies on an expensive message-passing procedure to
propagate information in each training epoch and thus
has toinclude the full-batch during training. The method
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Figure 5. Comparison of different methods for the running time (left) and cell-type classification accuracy (right) on variably sized datasets.

inherently requires huge memory costs, preventing
its applications to large datasets on GPU. In contrast,
GraphCS pre-computes the information propagation
via the approximate Generalized PageRank algorithm
and trains the model with mini-batches, enabling
linear complexity for a high speed and scalability on
millions of cells. Meanwhile, we use VAT to incorporate
the information of data distribution from unlabeled
data to improve the generality of our model. We have
demonstrated that our model outperformed scGCN in
terms of average accuracy on all datasets and was 10
times faster than it on large datasets. In addition, the
GBP module of GraphCS propagates feature information
among similar cells based on the cell graph, resulting
in batch effects removal due to similar cells within and
between reference and query datasets sharing similar
gene expressions.

With the rapid development of single-cell filed, several
large-scale single-cell projects such as MCA, HCL and
some other atlases [63-65] are established, where mil-
lions of sequenced cells have been well annotated. The
tremendous accumulation of well-annotated scRNA-
seq datasets can be used as high-quality reference
datasets covering more cell types. Because of the
scalable, fast and accurate performance, GraphCsS is
useful for transferring labels from these large scRNA-seq
reference datasets to newly generated scRNA-seq data
in a reasonable time. Second, our model is proven able to
annotate cross-species datasets, which is useful to utilize
similar well-studied species datasets for annotating new
species. Third, with the decreasing scRNA-seq costs and
international collaborations, extremely large datasets
emerge for important problems such as the mouse
brain [66, 67] and covid-19 datasets [68]. Such datasets
require annotation methods that can remove batch
effects and be scalable. On the other hand, even with the
large-scale single-cell projects, novel cell types might
still happen in the query dataset. In this scenario, the

predicted confidence scores for cell types aid to detect
the unknown cell types, as proved in tumor datasets.

In spite of the superior performances, GraphCS can
be improved in several aspects. First, our model ignores
the relations between genes, which has been shown to
improve the imputation of scRNA-seq data [40]. Second,
the performance of our model is influenced by the con-
structed cell graph, and a high-quality graph can improve
performance. Thus, the model may be useful for spatial
transcriptomic data analysis [69, 70], where cells could be
naturally connected through the provided spatial coordi-
nates. Third, for unknown cell types, currently we have
no good way to decide the optimal threshold, and users
have to make decisions from prior knowledge. On the
other hand, users can merge different datasets to reduce
unknown cell types in the query dataset, as our model is
shown not influenced by abundant cell types in the ref-
erence datasets. In conclusion, this study provided a new
robust and scalable model to utilize known reference
datasets for accurately classifying single cells in query
datasets. This method will be particularly useful with the
rapidly increasing annotated single-cell datasets.

Key Points

e With the launch of several large-scale single-cell
projects, millions of sequenced cells have been
annotated and it is promising to transfer labels
from the annotated datasets to newly generated
datasets. Graph neural network (GNN) is robust
to learn cell relations. Vanilla GNNs need to pass
information along the whole graph at each train-
ing epoch, which are difficult to process millions
of cells due to the expensive costs of computa-
tions and memory.

e We proposed a scalable GNN-based method for
accurate single-cell classification (GraphCS) by
pre-calculating the diffused information via the
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approximate Generalized PageRank algorithm
(GBP), enabling sublinear complexity in compu-
tations.

e The used GBP algorithm in GraphCS enables
training GNN networks through mini-batch,
enabling training of large datasets on GPU with
limited memory.

e GraphCs further reduces batch effects through
the virtual adversarial training technique.

e GraphCS demonstrates superior performance
on simulated, cross-platform, cross-species and
cross-omics scRNA-seq datasets. The model
could process 1 million cells within 50 min.

Supplementary Data

Supplementary data are available online at https://acade
mic.oup.com/bib.

Code availability

All source code used in our experiments have been
deposited at https://github.com/biomed-Al/GraphCS.
The scRNA-seq datasets that support the findings of this
study are available here: https://drive.google.com/drive/
folders/1STOT90HcxCKuxOTmOvqCI-IyE2IYEYVM.
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