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Modification of C–H bonds is of great interest for chemists, but controlling

selectivity is challenging. Differentiating sterically hindered C–H bond over

sterically favorable C–H bond is difficult. To develop a reaction for themodification

of the hindered aromatic meta-C–H bond, automation was used to explore

reaction space and artificial intelligence was used to predict reaction outcome.

The integration of automation and artificial intelligence will aid the development

and application of new synthetic methods.
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Selective functionalization
of hindered meta-C–H bond of o-alkylaryl ketones
promoted by automation and deep learning

Jia Qiu,1,2,5 Jiancong Xie,3,5 Shimin Su,1 Yadong Gao,2 Han Meng,4 Yuedong Yang,3,*

and Kuangbiao Liao1,2,6,*
THE BIGGER PICTURE

Selective C–H functionalization is

a key goal in organic chemistry.

Although various protocols were

reported, distinct electronic or

steric properties are generally

required for the successful

differentiation of one C–H bond

from others. For C–H bonds with

similar electronic properties,

sterically unhindered C–H bonds

are strongly preferred under

established protocols; therefore,

selective functionalization of

hindered C–H bonds remains a

major challenge. Promoted by

automation and artificial

intelligence, a different strategy

to functionalize the hindered

aromatic meta-C–H bond was

developed. Automation-based

high-throughput experimentation

was used to explore reaction

space and collect reaction data.

Artificial intelligence-based

models were used to predict

reaction yield of unseen

substrates. The integration of

automation and artificial

intelligence in organic synthesis is

an emerging field of research in

chemical research, which can

expedite reaction discovery and

application significantly.
SUMMARY

Selective functionalization of the sterically hindered aromaticmeta-
C–H bond is unprecedented and remains to be a major challenge.
Promoted by automation-based high-throughput experimentation
(HTE) and deep learning (DL), a novel strategy to functionalize the
hindered meta-C–H bond is disclosed. With carbon dioxide as a
traceless director, a one-pot three-step protocol was developed
to achieve selective arylation of o-alkylaryl ketones at the hindered
meta position. This novel strategy involved photo-induced C–H
carboxylation, carboxyl group-directed Pd-catalyzed C–H function-
alization, and microwave-assisted decarboxylation. With HTE and
DL, a broad scope of substrates was explored (1,032 reactions)
and a DL-based model (CMPRY) for reaction yield prediction was es-
tablished. Two independent tests with unseen o-alkylaryl ketones
and/or potassium aryltrifluoroborates were used to evaluate the
model. The model gave excellent performances in predicting un-
seen reactions; mean absolute errors in yield were only 6.6% and
8.4%, suggesting its potential in synthetic application.

INTRODUCTION

In natural products, pharmaceuticals, and functional materials, substituted arenes

are ubiquitous and important structural motifs.1–3 Several selective C–H functional-

ization of arenes have been reported in past decades.4–9 Despite the extra steps to

install and remove directing groups (DGs), directed C–H functionalization has been

demonstrated to achieve excellent selectivity at ortho-, para-, and unhinderedmeta-

position (Figure 1A).10–17 Yu and co-workers’ innovative template strategy enables

meta-C–H functionalization, but all reacted at unhindered meta-position due to

the steric preference (Figure 1B).16–18 Employing carbon dioxide (CO2) as a traceless

relay director for the unhinderedmeta-C–H arylation of phenols was first reported by

Larrosa and co-workers in 2014, which involves Kolbe-Schmitt reaction, carboxyl

group-directed Pd-catalyzed C–H arylation, and tandem decarboxylation pro-

cess.19–21 A similar approach, with norbornene (NBE) as a transient mediator, was

introduced by Yu group to achieve unhindered meta-C–H alkylation of phenyl acet-

amide in 2015.18 The Pd/NBE-relay process (Catellani process)22 was further ex-

ploited for other kinds of unhindered meta-C–H functionalization.23–25

Reported progresses predominately focused on unhindered meta-C–H bond; how-

ever, selective functionalization of the hindered meta-C–H bond was rarely re-

ported. To circumvent this challenge, we developed a one-pot three-step reaction

using CO2 as a traceless DG (Figure 1C). A photo-induced C(sp3)–H carboxylation
Chem 8, 1–13, December 8, 2022 ª 2022 Elsevier Inc. 1



Figure 1. Strategies for regioselective C–H functionalization of substituted arenes

(A) Directed arene C(sp2)–H functionalization.

(B) Approaches toward unhindered meta-C–H bond.

(C) This work: a three-in-one protocol for selective arylation of the hindered meta-C–H bond.
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reaction26 was used to install a carboxyl group at the benzylic position, then an aryl-

acetic acid directed Pd-catalyzed reaction was developed to achieve selective func-

tionalization of the hindered meta-C–H bond via high-throughput experimentation

(HTE); finally, a microwave (MW)-assisted decarboxylation was employed to release

CO2. Notably, HTE27–31 was the key for success to obtain optimal condition, explore

substrates scope, and collect standardized experimental data for deep learning. To

broaden the application of this methodology, deep learning models for reaction
2 Chem 8, 1–13, December 8, 2022
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Figure 2. Optimization of C–H carboxylation/C–H arylation/decarboxylation

(A) Optimization of C–H carboxylation process.

(B) Optimization of tandem C–H arylation/decarboxylation. (i) Selected examples of screened MPAA ligands, bases, and BQs; (ii) yields of 4a

(darkseagreen) and 5a (chocolate).
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yield prediction that rely on graph-based descriptors were developed, and the inter-

pretability of the model was also pursued.32–39

RESULTS AND DISCUSSION

Reaction development

Our studies began at the optimization of the photo-induced C(sp3)–H carboxylation

(Figure 2A).26 Owing to the considerable solubility of CO2 and relatively low boiling

point, dimethylformamide (DMF) was selected as solvent instead of dimethyl sulf-

oxide (DMSO). Then, bases were evaluated to improve the carboxylation yield.

Addition of KHCO3, carboxylated compound (2) was afforded in excellent yield.

With K2HPO4 and DMF saturated by CO2 in advance, C(sp3)–H carboxylation also

proceeded successfully (90% yield in 40 min).
Chem 8, 1–13, December 8, 2022 3
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Next, we moved on to study C–H arylation/decarboxylation process using the

carboxylated compound (2a) and potassium phenyltrifluoroborate (PhBF3K, 3a)

as model substrates to make the final product (5a) (Figure 2B). As of the arylacetic

acid directed C–H arylation, the hindered meta-C–H phenylation compound (4a)

was formed. It was proved that the mono-N-protected amino acids (MPAAs)

could accelerate the Pd(II)-catalyzed C(sp2)–H/arylboron cross-coupling.4,40–42

Then 46 kinds of MPAAs and 2 bases were selected for our initial condition

screening. In total, 92 conditions were quickly evaluated by HTE. Then, further

HTE were conducted to optimize MPAAs, bases, benzoquinones (BQs), tempera-

ture, and heating method (see details in supplemental information). It is worth

mentioning that certain level of decarboxylation product (5a) was observed in

this process. With L12, K2HPO4, and BQ2, the yield was improved to 92%

(5a:4a = 6:86). Finally, hindered meta-C–H phenylation final product (5a) was ob-

tained in 77% yield with decarboxylation process performed in a MW reactor at

150�C for 0.5 h.

Reaction scope

With the optimized conditions in hand, we began to explore the substrate scope of

o-alkylaryl ketones and potassium aryltrifluoroborates (ArBF3K) via HTE (Figure 3).

Thanks to the unique 1H-NMR shift of the a-H of carboxylic acids, we were able to

identify the reaction yield through NMR analysis in a high-throughput manner.

Therefore, the HTE enabled substrate scope exploration was focusing on the tan-

dem C–H functionalization, i.e., photo-induced C–H carboxylation/carboxyl group

directed Pd-catalyzed C–H functionalization. An array of structurally diverse sub-

strates, consisting of 24 ketones (1a–1x) and 43 ArBF3K (3a–3zq), was selected to

set up micromole-scale reactions using HTE (Figure 3).

Subsequently, a dataset with 1,032 reaction data was obtained (Figure 4A). It was

found that over 70% of the reactions gave desired products, which demonstrated

that our strategy was generally applicable for a wide range of substrates. Generally,

o-tolyl aryl ketones (1a–u) afforded the corresponding products in notable yield

with most ArBF3K. Substituents such as fluoro (1c, 1g, 1k, and 1n), chloro (1d and

1h), and tert-butyl (1f and 1j) on the aromatic ring were tolerated. According to

the literature, compounds with substitution at the benzylic position were chal-

lenging substrates.26 To our surprise, substrates with Me, Et, Bn, and OMe at the

benzylic position (1q–1t) were also amenable to this protocol. In the case of o-tolyl

pyridyl ketone (1u), some corresponding products were afforded in moderate

yields. It appears that o-tolyl p-bromophenyl ketones (1l) yield traceless or no prod-

uct across most ArBF3K probably due to the debromination side reaction; however,

41% overall yield of tandem C(sp3)–H carboxylation/C(sp2)–H phenylation was ob-

tained when it reacted with p-OMePhBF3K (3j). In the C–H carboxylation step, aryl

alkyl ketones (1v, 1x) were generally considered to have lower reactivity than aryl

bromophenol ketones; however, in this study, many reactions still gave good over-

all yield. Phenylation of C(sp2)–H bonds with two adjacent substituents were known

to be extremely challenging due to the huge steric hindrance. In this study, para-

substituted o-tolyl phenyl ketones (1o, 1p) and para-substituted o-tolyl methyl ke-

tone (1w) indeed gave low yield in most cases; however, p-OMePhBF3K (3j) still

gave 23% overall yield with para-chloro o-tolyl phenyl ketone (1p). In terms of

the substrate scope of ArBF3K, electron-donating or electron-withdrawing groups

at ortho-, meta-, or para-positions were compatible in this reaction (3a–3zc). How-

ever, ortho substituted ArBF3K (3t-3zc) generally gave lower yield due to the steric

hindrance. Several reactive functionalities, such as hydroxyl (protected or unpro-

tected) (3l, 3s, and 3zi), benzodioxole (3zf), ketones (3zg), and aldehydes (3zj),
4 Chem 8, 1–13, December 8, 2022



Figure 3. o-Alkylaryl ketones and ArBF3K substrates scope

Yield determined by H-NMR analysis with coumarin as internal standard, see the supplemental information for detailed reaction conditions.
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were also suitable for this tandem reaction. However, potassium trifluoroborate

with phenyl carboxylic acid (3zh), pyrazole (3zn), and pyridine (3zo) were not

compatible in most cases.
Chem 8, 1–13, December 8, 2022 5



Figure 4. Heatmap of yields of o-alkylaryl ketones and ArBF3K substrates scope

(A) Yields heatmap of 1,032 reactions; (B) selected examples with various substitution. Yields determined by 1H-NMR analysis with coumarin as internal

standard.
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Upon analyzing these results (Figure 4A), basic rules or conclusions about this tan-

dem reaction were hard to be drawn. For instance, it was difficult to summarize

how substituents with different electronic characteristics on o-alkylaryl ketones or

ArBF3K would affect the overall yield. Examples in Figure 4B revealed that synergis-

tic effect of all variables instead of any single factor determine the reaction outcome.

The electron density on the aromatic ring decreases with the substitution from left to

right and from bottom to top. Bis(o-tolyl) ketone (1b) gave higher yield than o-tolyl

phenyl ketone (1a) when they reacted with PhBF3K (3a) and electron-poor ArBF3K [Ar

as p-F, -ClC6H4 (3b–3c)] and electron-rich ArBF3K [Ar as p-OnBu, -OBnC6H4 (3k and

3l)]; however, 1a gave higher yield than 1b when it came to p-MeC6H4BF3K. o-Tolyl

o-chlorophenyl (1d) gave higher yield than o-tolyl o-fluorophenyl (1c) when they re-

acted with PhBF3K (3a) and electron-poor ArBF3K [Ar as p-F, -Cl, -BrC6H4 (3b–3d)];

however, when it came to electron-rich ArBF3K [Ar as p-Me, -tBu, -OMe, -OnBu

(3h–3k)], 1d gave higher yield than 1c for 3h, but opposite results were obtained
6 Chem 8, 1–13, December 8, 2022
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Figure 5. The development of CMPRY

(A) Dataset split.

(B) The development of DL-based models.

(C) 5-fold cross validation result of CMPRY.

(D) Independent test result of CMPRY.

(E) The performance of CMPRY with different training data sizes.

(F) 4 ketones and 8 ArBF3K in strict independent tests.

(G) The performance of CMPRY under strict independent tests.
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for 3i and 3k. Similar chaos were observed on other substrates with para-substitu-

tions (1i, 1k, and 1m–1n). There was no obviously privileged or underprivileged elec-

tronic characteristics for this reaction because substrates with electron-donating or

electron-withdrawing groups could deliver either good or bad results depending on

the structure of its reaction partner. In reality, even for a well-established reaction,

predicting outcome of an unseen substrate by inference is a challenging task for

an experienced chemist. Therefore, developing prediction model for unseen sub-

strates would hold tremendous importance to help chemists to adopt this method-

ology in their synthetic plan; moreover, it could also significantly lower the bar for

non-expert to use this methodology.
CMPRY: DL-based reaction yield prediction

With the experimentally measured 1,032 reaction yield data points, we developed

a new model, communicative message passing neural network for reaction yield

prediction (CMPRY), to predict reaction yield of this tandem reaction. The

CMPRY model was based on the communicative message passing neural network

(CMPNN) architecture.43 First, we split the dataset into training data and external

data. We selected 860 reactions, consisting of 20 ketones (1a–1h, 1j–1r, 1t, 1v,

and 1x) and 43 ArBF3K (3a–3zq), as the training set. To evaluate the model

performance for external data, we used the rest 172 reactions (1i, 1s, 1u, and

1w with 43 ArBF3K) as the independent test set (Figure 5A). Due to the small

training set, we pretrained the model on a large reaction dataset (USPTO-

479k)44 by following the previous study that preserves the equivalence of mole-

cules with respect to chemical reactions in the embedding space45 and then

fine-tuned it on the training samples. By a random 80/20 split of the training set

followed by a 5-fold cross validation, our model achieved R2 of 0.750 and MAE

in yield of 7.2% (Figures 5B and 5C) that are essentially the same as the ones

(R2 of 0.736 and MAE in yield of 6.6%) on the independent test set (Figures 5B

and 5D). It is worth mentioning that 4 unseen ketones were included in the inde-

pendent test set. Achieving such good performance for external data demon-

strated that our model was capable of predicting reaction yield in this tandem re-

action. We also evaluated the relationship of model performance with regards to

the numbers of ketones in the training dataset. As expected, the R2 was 0.503

with 172 training points (4 ketones) and gradually increased to 0.735 with 688

points (20 ketones). Although R2 continues growing with the training size, it tends

to converge (Figure 5E).

For model comparison, we have employed four commonly used baselines. As shown

in Figure 5B, the removal of pretraining caused a big drop with R2 of 0.643. The

change from CMPNN to graph convolutional networks (GCNs) resulted in a small

but significant decrease in R2. Although the Machine Learning-based method

extreme gradient boosting (XGB) and gradient boosting machine (GBM) achieved

acceptable result in the 5-fold cross validation, they lacked sufficient generalization

capability, giving R2 of 0.606 and 0.626 in the independent test.
8 Chem 8, 1–13, December 8, 2022



Figure 6. Important structural fragments derived by CMPRY using CAM-GRAD

(A–E) Selected examples for the model interpretability calculated by CAM-GRAD. The atoms and

bonds marked in green indicate their importance in the reaction.
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For a stricter test, we attempted to make an independent test set with both ketones

and ArBF3K unseen. We selected 4 ketones (1i, 1s, 1u, and 1w) and 8 ArBF3K (3b, 3k,

3n, 3p, 3r, 3s, 3u, and 3v) and removed their related reaction data from the training

set (Figures 5A and 5F). We re-trained the model using the shrunk training set and

tested it on the strict independent test set. The model achieved a reasonable R2

value of 0.706 andMAE in yield of 8.4%, indicating the generality and the robustness

of CMPRY (Figure 5G). The performance could be regarded superior because of the

complexity of predicting tandem reactions, in regard with that most prediction

models reported in the literatures46–51 were dealing with one-step reaction.

To interpret our DL-based model, we have employed the gradient-weighted class

activation mapping (CAM-GRAD)52,53 to identify critical atoms for predictions. As

shown in Figure 6, CMPRY highlighted the new C(sp2)–C(sp2) bond formation, indi-

cating that the model learned the basic reaction information. For the reaction 6C

that gave no product, CMPRY highlighted the ortho-substitution, methylsulfonyl

group, agreeing with the rule that the steric hindrance is harmful for the C–H

bond activation. Interestingly, CMPRY found that the carboxylic acid group was

important at all successful reactions, although such information was not input into

the predictions. Mechanistically, carboxyl group is needed to direct palladium cata-

lyst for C–H activation. Last but not the least, there are some peculiar structural frag-

ments highlighted in reactions 6D and 6E. For example, both oxygen atoms in the

aldehyde and acetyl groups were considered important atoms, but only oxygen in

the acetyl group was highlighted as an important atom in products.

Reaction utilities

To improve the synthetic utilities of this methodology and avoid the tedious separa-

tion of C–H carboxylation and C–H arylation products, a one-pot three-step reaction
Chem 8, 1–13, December 8, 2022 9



Figure 7. One-pot process for hinderedmeta-C–H arylation with CO2 as traceless directing group

Reaction conditions unless specified otherwise: 1 (0.1 mmol), K2HPO4 (2.0 equiv), 365 nm UV light,

40 min; then, 3 (0.3 mmol), Pd(OAc)2 (10 mol %), L12 (20 mmol %), Ag2CO3 (2.0 equiv), and K2HPO4

(1.0 equiv), 110�C, 12 h; finally, microwave reactor, 150�C, 0.5 h. Isolated yields.
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for selective functionalization of the hindered meta-C–H bond was pursued (Fig-

ure 7). Following the photo-induced C–H carboxylation, the unpurified intermediate

was subjected to carboxyl group directed Pd-catalyzed C–H arylation with ArBF3K,

and then, the vial was transferred to an MW reactor for decarboxylation to deliver

the final product. Gratifyingly, this one-pot procedure furnished the desired hin-

dered meta-C–H functionalization products in good overall yields (up to 76% for

three steps, meaning up to 91% yield on average for each step). The synthetic appli-

cability and efficacy transformation were further demonstrated by these results.

More importantly, CO2 was acted as a traceless relay director in this protocol.

In summary, this methodology successfully achieved selective functionalization of

hinderedmeta-C–H bond of o-alkylaryl ketones. A tandem transformation, involving

photo-induced C–H carboxylation, carboxyl group-directed Pd-catalyzed C–H func-

tionalization, and MW-assisted decarboxylation, was developed to streamline the

access of multiply substituted arenes that would otherwise require extra steps.

Further application of this strategy is under investigation in our laboratory. More-

over, several DL models, which were capable of predicting reaction yield over a

range of unseen substrates for this one-pot reaction, have been developed. Overall,

we hope that the use of HTE-DL paradigm in the development of hindered meta-

C–H arylation will stimulate its further application in the development of other syn-

thetic methods.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the lead contact, Kuangbiao Liao (liao_kuangbiao@gzlab.

ac.cn).
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Materials availability

This study did not generate new unique reagents.

Data and code availability

All datasets, codes, and workflows for modeling are available at https://github.com/

biomed-AI/CMPRY.

Full experimental procedures are provided in the supplemental information.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.chempr.

2022.08.015
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