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Abstract

Clustering analysis is widely used in single-cell ribonucleic acid (RNA)-sequencing (scRNA-seq) data to discover cell heterogeneity and
cell states. While many clustering methods have been developed for scRNA-seq analysis, most of these methods require to provide
the number of clusters. However, it is not easy to know the exact number of cell types in advance, and experienced determination is
not always reliable. Here, we have developed ADClust, an automatic deep embedding clustering method for scRNA-seq data, which
can accurately cluster cells without requiring a predefined number of clusters. Specifically, ADClust first obtains low-dimensional
representation through pre-trained autoencoder and uses the representations to cluster cells into initial micro-clusters. The clusters
are then compared in between by a statistical test, and similar micro-clusters are merged into larger clusters. According to the
clustering, cell representations are updated so that each cell will be pulled toward centers of its assigned cluster and similar clusters,
while cells are separated to keep distances between clusters. This is accomplished through jointly optimizing the carefully designed
clustering and autoencoder loss functions. This merging process continues until convergence. ADClust was tested on 11 real scRNA-
seq datasets and was shown to outperform existing methods in terms of both clustering performance and the accuracy on the number
of the determined clusters. More importantly, our model provides high speed and scalability for large datasets.

Keywords: deep embedded clustering, dip-test, estimating the number of cell clusters, single-cell clustering, single-cell RNA
sequencing

Introduction
Recent advances in single-cell ribonucleic acid (RNA)-
sequencing (scRNA-seq) technologies have paved the
way for researchers to generate high-throughput single-
cell gene expression [1]. A full characterization of
transcriptome profiling at single-cell resolution holds
enormous potential for discovering trajectories of
different cell developmental states and investing the
cellular heterogeneity [2, 3]. One important step to
discover cell heterogeneity and cell states is to perform
clustering analysis, which aims to group a set of
cells into meaningful cell populations based on their
transcriptome similarity [4, 5]. The clustering can be
used as additional downstream analysis and provides
a reference to build a cell atlas [6–8]. Nevertheless,
the clustering is meeting grand challenges due to the
characteristic of scRNA-seq data, such as sparsity and
high-dimensional features [9–11].

To resolve these challenges, a wide variety of clus-
tering algorithms have been developed for scRNA-seq
analysis [4, 5]. Early popular algorithms are variants of
K-means that divide cells into K clusters, with K as the

predetermined number of clusters. For example, scDeep-
Cluster [12] uses K-means to obtain initial centers of
clusters and then pushes each cell to its most similar
centers iteratively. Similar strategies have also been used
by other methods such as SAIC [13], scVDMC [14], DESC
[15] and the latest clustering method CaFew [16]. On the
other hand, graph clustering is based on the community
detection algorithms that cluster neighbored cells based
on a resolution parameter. For example, Seurat [17], one
of the most widely used toolkits for scRNA-seq analysis,
connects cells into a KNN-graph and then partitions the
graph into communities (clusters) through a predeter-
mined resolution parameter, where a higher resolution
generates a greater number of clusters. Similar strategies
have also been used by other methods such as SNN-Cliq
[18] and SCANPY [19]. While these two classes of methods
are robust, they need a parameter (K or resolution) as a
priori, which unfortunately is seldom known in advance.

To avoid the predetermined parameter, SIMLR [20] pre-
estimates the number of clusters as the rank constraint
and then combines graph diffusion to learn a cell sim-
ilarity measure for clustering. Similarly, SC3 [21] also
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pre-estimates the number of clusters, but it then uses
K-means to cluster cells from different eigenvectors and
constructs a consensus matrix for clustering. However,
the pre-estimated number of clusters is usually not accu-
rate, causing low performance in the following cluster-
ing. Another strategy is to select optimal number of
clusters according to the clustering results. For example,
IKAP [22] clusters cells by overestimating the number of
clusters in the PC space of principal component anal-
ysis (PCA) [23] and then iteratively merges the nearest
clusters to determine the optimal number of clusters.
The recently developed MultiK [24] generates multiple
groups of clustering results using different number of
clusters by tests and trials and selects the optimal num-
ber of clusters under certain evaluation criteria. Simi-
lar strategies are applied in methods such as Clustree
[25], scClustViz [26] and TooManyCells [27]. Nevertheless,
these methods are machine learning or statistics-based
methods that have to decouple the feature extraction
and clustering into two separate steps, whereas the pre-
extracted features are not optimal for the subsequent
clustering. At the same time, they learn cell represen-
tations through linear algorithms (mainly PCA), which
cannot efficiently process the complex scRNA-seq data
[28]. Additionally, since these algorithms need multiple
tests and trials, they are time-consuming and cannot
process large datasets with thousands of cells.

Here, we proposed ADClust, an automatic deep embed-
ding clustering method for scRNA-seq data, which can
accurately cluster cells without requiring a predefined
number of clusters. Specifically, we first pre-train the
autoencoder to learn the non-linear low-dimensional
representation of original gene expression, which is
used to cluster cells into a mass of micro-clusters. The
micro-clusters are then compared in between through
a statistical test for unimodality called Dip-test [29] to
detect similar micro-clusters, and similar micro-clusters
are merged through jointly optimizing the carefully
designed clustering and autoencoder loss functions. This
process continues until convergence. By benchmarked
on 12 real scRNA-seq datasets, ADClust was shown to
outperform existing methods in terms of both clustering
performance and the accuracy on the number of the
determined clusters. More importantly, ADClust showed
a high speed and scalability on large datasets.

Materials and methods
Datasets and pre-processing
Simulated datasets

To evaluate the performance of ADClust on simulation
datasets, we followed the study [30] to generate simu-
lated scRNA-seq datasets using the package Splatter [31].
For simulating the scRNA-seq datasets with different
clustering signal strengths, we generated datasets with
different de.facScale in {0.2, 0.25, 0.3, 0.35, 0. 4}. A higher
de.facScale value represents a stronger clustering signal,
corresponding to easier datasets. Each dataset contains

2000 cells and 2000 genes. The parameter dropout.mid
was set to 2 (fixed dropout rates around 45%). We fol-
lowed the study [32] to set the parameter group.prob to
{0.1, 0.15, 0.25, 0.5} so that each simulated data contained
four groups of different proportions. We used default
values for other parameters. We generate the dataset five
times repeatedly with different random seeds for each
setting and show the average results.

Real datasets

We employed the commonly used datasets from [30]
that included 15 datasets. By removing seven small
datasets containing <1000 cells, we finally kept eight
datasets (Xin, Tasic, Baron Mouse, Klein, Romanov,
Zeisel, Segerstolpe and Baron Human). In order to test
the scalability of our model, we selected four largest
datasets (Mouse retina, TM, PBMC 68K and COVID_19)
from previous studies [12, 33, 34] containing 27 499,
54 865, 68 579 and 1.46 million cells, respectively.
As detailed in Table 1, these datasets are involved in
different biological processes and various tissues and
contain different scales of cells ranging from thousands
to tens of thousands derived from various scRNA-seq
techniques. Each dataset was pre-processed using the
standard procedure as proposed in Seurat. Concretely, we
normalized the gene expression by the ‘NormalizeData’
function with the default parameter ‘LogNormalize’(‘RC’
for simulation data) and the scaling factor of 10 000.
Then, the top 2000 highly variable genes were selected
through the ‘FindVariableFeatures’ function based on the
normalized matrix.

The architecture of ADClust
This study proposed an automatic deep embedding clus-
tering method that can accurately cluster cells with-
out requiring to predefine the number of clusters. As
shown in Figure 1, the ADClust model consists of two
modules: the autoencoder and clustering optimization
modules. The autoencoder aims to learn deep embedding
representations of cells, and the clustering optimization
module uses the learned embedding representations to
cluster cells.

Autoencoder module

Autoencoder is used for embedding the input scRNA-
seq gene expression data X ∈ R

N×d into low-dimensional
space, where N and d are the number of cells and the size
of genes, respectively. Autoencoder is an unsupervised
neural network that consists of the encoder and decoder
modules [35]. The encoder tries to embed the input
data into a latent, and the decoder tries to reconstruct
the embedded data into its origin space. Thus, the
autoencoder can efficiently learn the useful low-
dimensional latent by minimizing the reconstruction
loss Lresas follows:

Lres = 1
|X|

∑
x∈X

∥∥x − dec (enc(x))
∥∥2

2, (1)
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Table 1. Summary of the datasets used in this study

Datasets GSE/ID Protocol #Cells #Genes #Cell types

Xin GSE81608 SMARTer 1600 39 851 8
Tasic GSE71585 SMARTer 1679 24 150 18
Baron Mouse GSE84133 inDrop 1886 14 878 13
Klein GSE65525 inDrop 2717 24 175 4
Romanov GSE74672 Fluidigm C1 2881 24 341 7
Zeisel GSE60361 STRT/C1 UMI 3005 19 972 9
Segerstolpe E-MTAB-5061 Smart-Seq2 3514 25 525 15
Baron Human GSE84133 inDrop 8569 20 125 14
Mouse retina GSE81904 Drop-seq 27 499 13 166 19
TM GSE109774 Smart-Seq2 54 865 19 791 55
PBMC 68k SRP073767 10X chromium 68 579 20 387 10
COVID_19 GSE158055 10X chromium 1 462 702 27 943 12

Figure 1. Overview of the (A) ADClust framework: scRNA-seq data are used to construct initial micro-clustering through the Louvain algorithm. The
clustered results are input into (B) the clustering optimization module to optimize the reconstruction and clustering loss functions for the optimal cell
representations according to which similar micro-clusters are detected through the Dip-test and merged to update the clustering results. This process
iterates until no more cluster merging.

where
∥∥ · ∥∥2

2 represents the square Euclidean, and the
dec() and enc() represent encoder and decoder functions,
respectively. The enc(x) is the learned embedding repre-
sentation for gene expression x of individual cell.

The clustering optimization module

Based on the learned embedding representations, cells
are clustered through the Louvain algorithm [36] into
plentiful initial micro-clusters. The micro-clusters are
then compared in between by Dip-test, and similar

micro-clusters are merged through a carefully designed
clustering loss function.

The Dip-test and Dip-score

The Dip-test is a statistical test to measure modality,
which was first developed by J. A. Hartigan and P. M.
Hartigan in the 1980s [29]. The test detects the sample
(cell) set of two clusters and outputs a Dip-score ∈[0,1]
as the probability to unimodality of the sample set. Two
micro-clusters with a larger Dip-score represent a higher
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structural similarity in between and will be merged in our
method.

Clustering loss

Similar micro-clusters were pulled together in the
embedding space of autoecnoder through the clustering
loss Lclu originally used in [37]:

Lclu =
(
1 + std (DC)

)
mean (DC)

1
|X|

∑
x∈X

K∑
i=1

P̃
(
cx, i

) ‖enc(x) − μi‖2
2,

(2)
where cx is the cluster containing cell x, μ is the cen-
ters for K clusters, P̃

(
cx, i

) = P
(
cx, i

)
/
∑K

j=1 P
(
cx, j

)
reflects

cluster similarity by normalizing the Dip-score P
(
cx, j

)
between the cluster centers of cx, and i estimated through
the Dip-test [29]. The ‘mean’ and ‘std’ are the mean and
SD of the set of cluster-pairwise distances DC.

DC =
{√∥∥μi − μj

∥∥2
2 | i ∈ [1, K − 1] and j ∈ [i + 1, K]

}
.

(3)

Intuitively, our model will minimize the loss by reduc-
ing the distance between a cell and the center of its
assigned center. At the same time, the cell will also be
pulled toward its similar clusters with strength depend-
ing on the similarity to the cluster i. As a result, the
model will reduce the distance between clusters if they
are similar with a large Dip-score. This process will pull
similar micro-clusters together. The division by the mean(
DC

)
was used to prevent the autoencoder from only

reducing the embedding scale to minimize loss Lclu. We
also apply the term std

(
DC

)
to impede the model’s ability

to reduce the scale and simultaneously push individual
clusters far away.

Finally, we optimize ADClust with the following loss in
an end-to-end manner:

L = Lres + λLclu, (4)

where λ is the hyper-parameter to balance contributions
from the clustering loss. In this study, we setλ = 1 for all
datasets.

Merging process

We merge two clusters if their corresponding Dip-score
is larger than the Dip-score threshold. Cells in these two
merging clusters will be assigned the same cell label,
and a new center of these cells will be computed as the
following:

μnew = arg min
x∈Ci∪Cj

⎛
⎝

∥∥∥∥∥enc(x) − |Ci| μi + ∣∣Cj

∣∣ μj

|Ci| + ∣∣Cj

∣∣
∥∥∥∥∥

2

2

⎞
⎠ . (5)

Based on the new center μnew, we need to update the
Dip-score matrix P and P̃. The merging process is repeated
if there is still a Dip-score in P that is greater than the

threshold. After the merging process, we continue opti-
mizing the model and merging the clusters. This process
continues until there is no Dip-score greater than the
threshold.

Hyper-parameters setting
The ADClust was implemented in PyTorch and C. The
dimensions of the autoencoder were set to input-512-
256-128-10-128-256-512-input. The training batch size
was generally set as 128, while the size was increased for
large datasets (1024 for above 10 000 cells) to further
reduce the training time of each epoch like in ref
[38]. The models were optimized through the Adam
optimizer with a learning rate of 0.0001. We empirically
set the number of epochs in pre-trained autoencoder to
100 and 400 for real datasets and simulated datasets,
respectively. We empirically set resolution = 3 in the
Louvain algorithm for all datasets to obtain the initial
number of clusters that were much larger than the
true number of clusters. (We listed the true number
of clusters and the initial number of clusters for all
datasets in Supplementary Table S1 available online at
http://bib.oxfordjournals.org/.) We obtained the initial
micro-clusters by Louvain algorithm, while the Louvain
was not further optimized. The Dip-score threshold was
set to 0.9, which determined whether two clusters should
be merged. The number of epochs for the clustering
process was set to 50. All results reported in this paper
were conducted on Ubuntu 16.04.7 LTS with Intel® Core
(TM) i7-8700K CPU @ 3.70 GHz and 256 GB memory, with
the Nvidia Tesla P100 (16G).

Evaluation criteria
Evaluation metric for clustering

Five common clustering metrics are used for evaluating
cell-clustering results in this study: normalized mutual
information (NMI) [39], adjusted rand index (ARI) [40],
clustering accuracy (CA) [41], Fowlkes–Mallows index
(FMI) [42] and silhouette coefficient (SC) [43].

The NMI is defined as

NMI (Y, C) = 2 × [H(Y) − H (Y|C)]
[H(Y) + H(C)]

, (6)

where C and Y are the predicted clusters and the true
clusters (the same below), respectively. The term H( ) is
used for computing the entropy.

The ARI is defined as

ARI =

∑
ij

⎛
⎝ nij

2

⎞
⎠ −

⎡
⎣∑

i

⎛
⎝ ai

2

⎞
⎠ ∑

j

⎛
⎝ bj

2

⎞
⎠

⎤
⎦ /

⎛
⎝ n

2

⎞
⎠

1
2

⎡
⎣∑

i

⎛
⎝ ai

2

⎞
⎠ + ∑

j

⎛
⎝ bj

2

⎞
⎠

⎤
⎦ −

⎡
⎣∑

i

⎛
⎝ ai

2

⎞
⎠ ∑

j

⎛
⎝ bj

2

⎞
⎠

⎤
⎦ /

⎛
⎝ n

2

⎞
⎠

,

(7)

[[DmEquation7]]where ai is the number of cells appearing
in the ith cluster of C, bj is the number of cells appearing
in the jth cluster of Y and nij is the number of overlaps
between the jth cluster of Y and the ith cluster of C.
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The CA is calculated as

CA = max
m

∑n
i=1 1

{
li = m (ci)

}
n

, (8)

where n is the total number of cells and m ranges over all
probable one-to-one mapping between clustering assign-
ment ci and real label li.

The FMI is derived from the true positives (TP), false
positives (FP) and false negatives (FN) as follows:

FMI =
√

TP
TP + FP

· TP
TP + FN

. (9)

The SC for cell i is defined as the following:

SC(i) = b(i) − a(i)
max

{
a(i), b(i)

} , (10)

where b(i) and a(i) represent the mean nearest-cluster
distance and the mean intra-cluster distance for sample
i, respectively.

Accuracy evaluation of the number of determined clusters

For evaluating the accuracy of each method in determin-
ing the number of clusters for all datasets, we use the
mean absolute error (MAE) as the evaluation index of
accuracy. The MAE is defined as

MAE = 1
m

m∑
i=1

∣∣(yi − ỹi
)∣∣ , (11)

where yi and ỹi is the true number of clusters and the
determined number of clusters, respectively.

Benchmark methods
To evaluate the clustering performance, we compared
ADClust with other tools including MultiK, SIMLR,
scDeepCluster, SC3, scQcut [44], IKAP, CIDR [45], Seurat
(version 3.0), SHARP [46], scGMAI [47] and DESC. As
MultiK outputs multiple estimated number of clusters,
we selected the estimated number of clusters with the
highest ARI. We set the ‘NUMC’ parameter of SIMLR as a
range [2:20] to estimate the number of clusters followed
[44]. We set the true number of clusters for scDeepCluster
since it could not estimate the number of clusters. For
other competing methods, we used the default hyper-
parameters recommended in the origin paper to estimate
the number of clusters.

Results
Clustering performance
In this section, we evaluated the clustering performance
of ADClust on both simulated and real datasets. We first
evaluated our method under different scenes through
simulated scRNA-seq datasets generated from Splatter.
As shown in Supplementary Figure S1A, available online

at http://bib.oxfordjournals.org/, the ARIs of all methods
increased with the growth of de.facScale since higher
de.facScale represented a stronger signal, correspond-
ing to easier datasets. Overall, the average ARI of our
method (0.78) was 16% higher than the second-ranked
method Seurat. Although MultiK and scQcut achieved
comparable results with our method at the de.facScale
of 0.4, MultiK and scQcut performed low at de.facScale
of 0.2 with ARI <0.1. IKAP and scGMAI could achieve
decent results at de.facScale of 0.4 with ARI of 0.7 and 0.6,
respectively. As shown in Supplementary Figure S1B–E,
available online at http://bib.oxfordjournals.org/, similar
trends could also be observed in terms of other evalua-
tion criteria.

To evaluate the clustering performance of ADClust on
real datasets, we applied our model to 11 scRNA-seq
datasets, including 8 small datasets (containing <10 000
cells) and 3 large datasets (containing >20 000 cells).
On the eight small datasets, our model showed superior
clustering performance compared with competing algo-
rithms (Figure 2A). On average, ADClust achieved ARI of
0.78, which was 8% higher than the one achieved by the
second best method MultiK. The third-ranked method
scQcut is a graph partitioning algorithm achieving an
ARI of 0.61. This value was 10% higher than Seurat,
another graph partitioning algorithm. The better perfor-
mance by scQcut is likely because scQcut optimized the
number of neighbors for the KNN-graph [44]. The fourth-
ranked method DESC achieved decent performance since
it jointly optimized cell labels assignment and learned
the latent representation that was fitted for clustering.
CIDR and SIMLR achieved a similar and low performance
since their pre-estimated number of clusters in advance
was usually incorrect. SHARP and scGMAI performed
better than SC3 and SIMLR, while they were still 25%
and 28% lower than our method in terms of average ARI.
scDeepCluster ranked the ninth, although it was inputted
with the real number of clusters. This is likely because its
performance heavily relied on the initialized results of K-
means. SC3 performed the worst since it was sensitive
to parameters used in dimension reduction and tended
to overestimate the number of clusters, as also indicated
in previous studies [24, 48]. We also tested CaFew by the
combination of SC3. Although it achieved an average ARI
of 0.47, 15% better than SC3 (similar to 14% as reported
in the original paper [16]), but worse than our method,
MultiK, scQcut, DESC, IKAP and SHARP (average ARIs of
0.78, 0.70, 0.61, 0.56, 0.54 and 0.53, respectively).

On four large datasets with the number of cells
>20 000, ADClust consistently achieved the best clus-
tering performance (Figure 2B). On average, ADClust
achieved ARI of 0.70, 14% higher than the one achieved
by the second best method scDeepCluster. The third-
ranked method DESC achieved a similar performance
with the fourth-ranked method Seurat. IPKA and scQcut
only could run on the large dataset Mouse retina, and
the ARI values of them were 81% and 8% smaller
than our method (ARI = 0.93), respectively. Our method
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Figure 2. Clustering performance of all methods on (A) small scRNA-seq datasets with <10 000 cells and (B) large scRNA-seq datasets with cells >20 000.
The dashed line indicates the mean value of ARI.

outperformed Seurat, scDeepCluster, DESC and SHARP
when clustering the dataset COVID_19 with 1.46 million
cells. We did not compare with IPKA and scQcut (on large
datasets containing >50 000 cells), scGMAI (on COVID_19
dataset), CIDR, SC3, SIMLR and MultiK due to occurring
errors (scQcut), out of memory (SIMLR and CIDR), ‘NAN’
values generation (SC3), segmentation fault in function
FastICA (scGMAI) or the runtime of more than two days
(IPKA and MultiK).

We also show the comparisons on 11 scRNA-seq
datasets for evaluation criteria CA, NMI, FMI and
SC in Supplementary Figure S2, available online at
http://bib.oxfordjournals.org/, and similar trends could
also be observed.

The evaluation on the number of determined
clusters
We first evaluated the accuracy of ADClust in the
number of determined clusters on simulated datasets.
As shown in Supplementary Figure S3 available online
at http://bib.oxfordjournals.org/, the MAE (0.79) by our
method was slightly better than the second-ranked
method SIMLR (1.12). SHARP and IPKA ranked third and
fourth but had higher MAEs (1.24 and 1.68, respectively).
The MAE of scQcut was significantly higher than other
methods due to the overestimation of the number of
clusters when de.facScale was <0.3.

To evaluate the accuracy in the number of determined
clusters on real datasets, we applied our model on all real
scRNA-seq datasets. Since Seurat, scDeepCluster and
DESC could not estimate the number of clusters, we did
not compare with them. As shown in Figure 3A, on eight
small datasets, the median absolute deviation of the
number of clusters determined by our model was closest
to zero, which was the smallest of the seven methods.

Additionally, we evaluated all methods by the MAE
between the actual and determined numbers of clusters.
As shown in Figure 3A, our method achieved the lowest
MAE of 2.88, which was less than the second-ranked
method scQcut (3.75). IPKA and Multik achieved a similar
MAE of around 4.3. SC3 achieved the worst performance
in terms of MAE due to the overestimation on the number
of clusters. SHARP and scGMAI achieved MAEs of 7.75
and 3.88, worse than our method (2.88). We further
showed the specific number of clusters determined
by each method in Supplementary Table S2 available
online at http://bib.oxfordjournals.org/. For the eight
small datasets, the number of clusters determined by our
model in four datasets was the most accurate. scQcut
and IKAP achieved the second best performance and
made the most accurate estimation for three datasets.
The number of clusters determined by SIMLR, CIDR and
SC3 was usually incorrect. When tested on three large
datasets, our model achieved more accurate estimation
than IKAP and scQcut (Supplementary Table S2 available
online at http://bib.oxfordjournals.org/). Other clustering
methods could not achieve corresponding results on
larger datasets due to error generation or the runtime
of >2 days.

To view the accuracy of the number of clusters deter-
mined by each method more clearly, we further drew a
scatter plot with the number of determined clusters and
the number of true clusters. On eight small datasets, as
shown in Figure 3B and Supplementary Figure S4, avail-
able online at http://bib.oxfordjournals.org/, the number
of clusters determined by our model was more similar
to the true number of clusters when compared with
MultiK, the method with the second-highest clustering
performance. SC3 tended to overestimate the number of
clusters, but SIMLR and CIDR tended to underestimate
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Figure 3. The accuracy in the number of determined clusters. (A) The deviations between the actual and determined number of clusters. The red triangle
represents the MAE between the actual and determined number of clusters on eight small datasets. (B) Correlations between the actual and determined
number of clusters.

the number of clusters. Our model also tended to under-
estimate the number of clusters on a few datasets.

To investigate why our model underestimated the
number of clusters on datasets Xin, Baron Mouse,
Segerstolpe, Mouse retina and TM, we analyzed the
cell composition of these datasets. As shown in Sup-
plementary Table S3–S7, available online at http://
bib.oxfordjournals.org/, we found that these datasets
contained multiple rare cell clusters [49], and these
rare cell clusters consist of ≤1.5% of the total cell
population on average (Xin < 1.5%, Baron Mouse < 0.7%,
Segerstolpe < 0.5%, Mouse retina < 1% and TM < 0.09%).
In summary, all methods, except SC3, tended to under-
estimate the number of clusters due to the inclusion of
rare cell clusters in many datasets. However, the number
of clusters estimated by SC3 was much larger than the
true number of clusters.

Contribution of components to the clustering
To investigate the contributions of components for the
clustering performance of ADClust, we conducted abla-
tion studies on all scRNA-seq datasets. As shown in
Table 2, the initial clustering results of ADClust achieved
the worst performance with 0.236, 0.620 and 0.347 in
terms of ARI, NMI and CA on average, respectively. The
results showed that ADClust failed to achieve the desired
performance when the number of clusters was overes-
timated. We noticed that the value of NMI was much
greater than both ARI and CA. This is likely because ini-
tially the number of micro-clusters was much larger than
the number of actual clusters and each initial micro-
cluster might contain only one cell type, resulting in a
wrongly high NMI value. The removal of both clustering
and autoencoder losses caused decreases of 7%, 6% and
9.6% in terms of ARI, NMI and CA, respectively. The
changes indicated ADClust could achieve decant perfor-
mance by jointly optimizing cell labels assignment and
learning embedded representations. The removal of the

clustering loss caused decreases of 6%, 3.9% and 7.5% in
terms of ARI, NMI and CA on average, respectively. The
results indicated that the similar micro-clusters were
efficiently pulled together in the low-embedding repre-
sentation of the autoencoder by optimizing clustering
loss. The removal of autoencoder loss in the clustering
phase caused a small but significant drop (3.4%, 2.2%
and 2.5% in terms of ARI, NMI and CA, respectively),
indicating the importance of autoencoder for improving
the representation. In summary, the better clustering
of the scRNA-seq data relied on the cooperation of the
modules.

We have conducted sensitivity experiments on the
hyper-parameter λ and Dip-score threshold on real
datasets. As shown in Supplementary Figure S5, available
online at http://bib.oxfordjournals.org/, our method was
insensitive to the hyper-parameters with average ARIs
changes <2%. Similar trends could be found when
evaluated by NMI, CA, FMI and SC.

Illustration of the ADClust
To illustrate how our model worked, we visualized the
merging process through UMAP [50]. Here, we took the
Baron Human dataset containing 14 original cell types
as an example. As shown in Figure 4A, the Baron Human
dataset was clustered into 34 initial classes in this
example by using the Louvain algorithm with resolu-
tion = 3.0. By minimizing clustering and autoencoder loss
functions, similar micro-clusters were pulled together.
As shown in Figure 4B, most of the initial clusters were
mixed with their similar clusters, resulting in multiple
larger clusters with the characteristics of intra-cluster
compactness and inter-cluster separability. Compared
with the true cell clusters, as shown in Figure 4C,
most similar micro-clusters were correctly combined
by our model. The results indicated our model could
efficiently cluster cells without requiring a predefined
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Table 2. Average results of ablation experiments on all real datasets

Ablation tests ARI NMI CA

Initial micro-clusters 0.236 ± 0.1 0.620 ± 0.09 0.347 ± 0.09
ADClust—clustering and autoencoder losses 0.690 ± 0.16 0.730 ± 0.1 0.724 ± 0.09
ADClust—clustering loss 0.70 ± 0.18 0.751 ± 0.09 0.745 ± 0.11
ADClust—autoencoder loss 0.726 ± 0.18 0.768 ± 0.11 0.795 ± 0.11
ADClust 0.760 ± 0.16 0.790 ± 0.1 0.820 ± 0.09

Figure 4. Visualizing our method on the Baron Human dataset containing 14 cell types. (A) The Baron Human dataset was clustered into 34 initial classes
by using the Louvain algorithm with parameter resolution = 3.0. (B) Final clustering results colored with initial clustering labels. (C) Final clustering
results colored with true labels.

number of clusters. We also visualized six other scRNA-
seq datasets with different sequencing technologies in
Supplementary Figure S6, available online at http://
bib.oxfordjournals.org/, and our method consistently
performed well.

To further confirm the clustering performance of
ADClust, we visualized the wrongly clustered cells by
the Sankey river plots on the Baron Human dataset.
As shown in Figure 5, ADClust achieved CA, NMI and
ARI values of 0.89, 0.88 and 0.913, respectively. For the
two major cell types beta and alpha, which together
account for the biggest portion (57%), our model could
correctly assign 98% cells. The second best method
CIDR could correctly assign 93% of cells. Other methods
made the accuracy of 60–82% on beta and alpha cell
types (Supplementary Figure S7 available online at
http://bib.oxfordjournals.org/). One major source of
wrong assignments in our model was the separation
of the ductal cells into three clusters. The separation
of ductal cells was also seen in all competing methods.
These similar mistakes may come from the difficulty of
clustering this cell type.

Comparison of running time and memory usage
With advances in scRNA-seq technologies, the cells in
emerging scRNA-seq datasets can exceed hundreds of
thousands, requiring their scalability and efficiency of
methods. For evaluating the runtimes of all methods
and their scalability, we applied all methods to scRNA-
seq datasets with a wide range of sizes. As shown
in Figure 6, dramatic differences in runtimes can be
observed among these methods with increasing the

number of cells. ADClust was faster than all competing
clustering methods. ADClust showed high scalability
with about linear growth of runtimes with the number
of cells: 36 s for about 2K cells and 900 s for about
70K. The next fastest method CIDR was close to our
algorithm in speed for datasets with <4K cells, but the
runtimes remarkably increased with the increase in the
number of cells. When the number of cells reached 8K,
CIDR was more than five times slower than our model.
MultiK was the slowest method and significantly slower
than all methods, which needed more than 2 days when
running datasets with larger than 10K cells. Our method
achieved comparable time costs to SHARP, and both of
them were faster than scGMAI. scQcut and SIMLR did
not take any strategies to filter genes. To fairly compare
the time costs, we also tested scQcut and SIMLR by using
2000 highly variable genes. In spite of slight speed up,
they are still 10 and 20 times slower than our method,
respectively. We did not include partial algorithms for
large datasets because they failed to run due to out of
memory (SIMLR and CIDR) or ‘NAN’ values generation
(SC3) or the runtime of more than 2 days (IKAP and
MultiK). Although Seurat was faster than our model
when the number of cells was <70K, its ARI was averagely
23% lower than our method (Supplementary Figure S8
available online at http://bib.oxfordjournals.org/).

We also tested the memory usage of all methods
on real datasets. As shown in Supplementary Figure
S9, available online at http://bib.oxfordjournals.org/,
ADClust took almost constant memory with respect to
the sample size because of the minibatch parameter
update, with the increase attributed to the data loader.
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Figure 5. A Sankey river plot shows the match between the actual labels and clustering results on the Baron Human dataset.

Figure 6. Comparison of different methods for the running time on
variably sized datasets.

Although most methods took <5 GB of memory when the
number of cells was within 8K, the memory requirement
of them increased rapidly with the number of cells.
For the large dataset with 1.46 million cells, ADClust
could perform the clustering analysis within 20 GB
memory. In contrast, SHARP required >100 GB of
memory, which was not feasible for most computers.
Our method achieved similar time costs but less memory
consumption than SHARP on the large dataset COVID_19.
Other methods could not deal with the large datasets
due to various errors (see above). The results showed
that our method could apply to large datasets with >1
million cells. We also noticed that most of our compared
methods were implemented in R language, and our effi-
ciency might result partly from our implementation in
Python.

Discussion
The optimization of clustering algorithms is being
consumingly studied in scRNA-seq analysis. One critical
challenge of clustering algorithms is to accurately cluster
cells into meaningful groups without predefining the
number of clusters. For this challenge, we proposed
ADClust, an automatic deep embedding clustering
method for scRNA-seq data, which can accurately cluster
cells without requiring a predefined number of clusters.
ADClust first clusters cells into the overestimated
number of micro-clusters and then pushes micro-
clusters sharing structural similarities together by
jointly optimizing the clustering and autoencoder loss
functions. On 12 real scRNA-seq datasets, our model
demonstrated better performance in terms of both
clustering performance and the accuracy on the number
of the determined clusters. More importantly, our model
provided high speed and scalability for large scRNA-seq
datasets.

While a few methods, such as MultiK, are also used
for simultaneously clustering scRNA-seq data and esti-
mating the number of clusters through multiple tests
and trials, it is necessary to strike a balance between
performance and time consumption for these methods.
In contrast, we cluster cells by iteratively merging sim-
ilar micro-clusters through minimizing clustering and
autoencoder loss functions. Our model achieved supe-
rior clustering performance by jointly optimizing the
cell labels assignment and learning the representations
that are suitable for the clustering. More importantly,
ADClust is scalable and fast since we train our model
with the means of mini-batches by using GPU. In short,
our model achieved superior results in terms of both
performance and efficiency.
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The real datasets used in this study were from seven
different sequencing technologies (shown in Table 1).
These sequencing technologies included the most
popular sequencing platforms, such as 10X chromium
and Smart-Seq2. As shown in Supplementary Figure
S10, available online at http://bib.oxfordjournals.org/,
our method achieved similar trends with Seurat in
terms of clustering performance on different sequencing
technologies. The ARIs of SMARTer, inDrop and Drop-
seq were higher than the average ARI, while the ARIs of
Fluidigm C1, Smart-Seq2 and 10X chromium were lower
than the average ARI. The difference in performance
among these sequencing technologies may come from
the variation in the efficiency of RNA molecule capture
[51].

Despite the advantages of ADClust, our model can
be improved in several aspects. First, our model may
fail to distinguish between subtypes of cells since they
have extremely similar gene expressions. We could add
prior information such as marker genes into our model.
Second, our model does not consider batch effects and
we will add modules to remove batch effects [15]. This
is important with the decreasing scRNA-seq costs and
increasing international collaborations. Third, small and
rare clusters may not be detected by our model since the
Dip-test might identify two clusters as unimodal if they
differ greatly in sizes.

In summary, we demonstrate that ADClust provides
an automatic deep embedded clustering algorithm,
which provides stable clustering solutions for scRNA-
seq datasets without requiring the predefined number of
clusters. In addition, it is worth noting that the concept
of ADClust is applicable beyond scRNA-seq data, such as
mass cytometry and scATAC-seq data.

Key Points

• Clustering analysis is widely utilized in single-cell RNA-
sequencing (scRNA-seq) data to discover cell hetero-
geneity and cell states. While many clustering methods
have been developed for scRNA-seq analysis, most of
these methods require providing the number of clusters.
However, it is not easy to know the exact number of cell
types in advance.

• We proposed ADClus, a deep learning-based method for
accurately clustering single-cell data without requiring
a predefined cluster number by iteratively merging sim-
ilar micro-clusters into larger clusters through jointly
optimizing the carefully designed clustering and autoen-
coder loss functions.

• ADClust was tested on real scRNA-seq datasets, and
shown to outperform existing methods in terms of both
clustering performance and the accuracy on the number
of the determined clusters. More importantly, our model
provides high speed and scalability for large datasets.

Supplementary data
Supplementary data are available online at http://bib.
oxfordjournals.org/.

Code availability
All source codes used in our experiments have been
deposited at https://github.com/biomed-AI/ADClust.

Data availability
The scRNA-seq datasets that support the findings of
this study are available at https://www.synapse.org/#!
Synapse:syn26524750/files/.
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