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Abstract

In single cell analyses, cell types are conventionally identified based on expressions of known marker genes, whose

identifications are time-consuming and irreproducible. To solve this issue, many supervised approaches have been

developed to identify cell types based on the rapid accumulation of public datasets. However, these approaches are sensitive

to batch effects or biological variations since the data distributions are different in cross-platforms or species predictions. In

this study, we developed scAdapt, a virtual adversarial domain adaptation network, to transfer cell labels between datasets

with batch effects. scAdapt used both the labeled source and unlabeled target data to train an enhanced classifier and

aligned the labeled source centroids and pseudo-labeled target centroids to generate a joint embedding. The scAdapt was

demonstrated to outperform existing methods for classification in simulated, cross-platforms, cross-species, spatial

transcriptomic and COVID-19 immune datasets. Further quantitative evaluations and visualizations for the aligned

embeddings confirm the superiority in cell mixing and the ability to preserve discriminative cluster structure present in the

original datasets.
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Introduction

Single-cell RNA-seq technologies have been successfully

employed to generate high-resolution cell atlas and to improve

our understanding of cellular heterogeneity in human diseases,

and one major step of single-cell RNA sequencing (scRNA-seq)

analyses is cell-type identification [1]. Typically, cells are first

grouped into different clusters, and each cell cluster will be

manually assigned to one label based on the uniquely high

expression levels of canonical makers. Nevertheless, visual

inspection of cluster-specific gene is labor intensive in practice

and irreproducible, and the assignments of cell types require
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expert knowledge of canonicalmakers [2].Thus, it is necessary to

develop automated computationalmethods for cell annotations.

A growing list of classificationmethods have been developed

to annotate cells based on public data of known cell types [3].

The most typical methods are similarity-based methods that

assign cell labels through scanning reference cell databases for

similar cells. For example, SingleR [4] and CHETAH [5] used

Spearman correlation for similarity measurement. The scmap

[6] combined three metrics, cosine distance, Pearson correlation

and Spearman correlation, to quantify the closeness between

query cell and the centroid of each reference cell cluster. Though
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these methods are robust, their linear metrics cannot reflect the

complex nonlinear relations between genes. To overcome this

issue, machine-learning-based methods were proposed to train

models on the reference dataset and to use the trained models

for predicting cell labels in target datasets. For example, scPred

[7] took advantage of singular value decomposition to obtain

small number of informative features for training a support vec-

tormachine (SVM)model. In singleCellNet [8], the reference data

were pair-transformed into binary matrix that was then used to

train a Random Forest classifier. Seurat [9] identified anchoring

cell pairs by projecting query cells onto precomputed reference

principal component analysis (PCA) structure and used these

anchors to train a weighted vote classifier for cell annotation.

However, these methods were applicable to test sets following

the same distribution as the training set [10] and thus did not

always work well due to batch effects or biological factors (e.g.

treatments, individuals, species) difference between datasets.

To solve the distribution mismatch between samples, many

methods have been proposed to align cell distribution, such as

fastMNN [11], Harmony [12] and LIGER [13]. However, most of

these methods did not support label predictions, while other

cell annotation tools such as singleCellNet and SingleR running

on the aligned data did not show much improvement due to

the transformation of gene expressions according to previous

benchmark analyses [3, 14]. The only method to support a joint

batch effect removal and cell annotation was Seurat [9]; when

the batch difference is obvious, Seurat provides the option to

learn an aligned subspace across datasets using canonical cor-

relation analysis (CCA) instead of PCA and identify anchors for

cell classification. Although Seurat took batch difference into

consideration with improvement in practice, the method suf-

fers from two limitations. First, the integration is unsupervised

without effectively using the cell-type information in reference

data for aligning cell clusters, and thus, it may mismatch cells

of different cell types across datasets. Second, since it optimizes

distribution-alignment and label projection independently, the

features for sample alignments are not necessarily optimal for

cell classification. Therefore, it should be beneficial to combine

sample alignment and cell annotation in one step.

In fact, the alignment of different scRNA-seq data can be

considered as a typical domain adaption task in the computer

vision community,with each batch as a domain [15].The recently

developed domain adaptation network could perform domain

alignment and classifier training jointly, which has been shown

to enhance the generalization of the classification model [16].

A typical domain adaptation framework is to reduce the distri-

bution mismatch of the latent feature via domain adversarial

learning [10]. On the other hand, unlabeled data (target sin-

gle cell dataset) could be used to better estimate the decision

boundary between the different classes, and thus improves the

classifier’s accuracy through the semi-supervised learning (SSL)

[17]. More importantly, SSL can also be used to alleviate the

adverse impact of domain discrepancy by jointly training the

classifier on labeled source and unlabeled target data [18]. As a

mainstream SSL method, the virtual adversarial training (VAT)

technique used adversarial examples generated from labeled

and unlabeled data to make the classifier robust against local

perturbations or noises, which has been proven to be effective

in many SSL tasks [19].

In this study, we have developed a new method (scAdapt)

to make use of both labeled source and unlabeled tar-

get data for accurate cell classification by combining the

domain adaptation and VAT-based semi-supervised learn-

ing. The domain adaptation network includes not only the

adversary-based global distribution alignment but also category-

level alignment [20] to preserve the discriminative structures

of cell clusters in low dimensional feature (i.e. embedding)

space. We demonstrate that scAdapt consistently outperforms

existing methods for classification and batch correction in

simulated, cross-platforms, cross-species, spatial transcrip-

tomic and COVID-19 immune datasets. Further quantitative

evaluations and visualizations for the aligned embeddings

confirm the superiority in cell mixing and the ability to preserve

discriminative cluster structure present in the original datasets.

Materials and Methods

Datasets and preprocessing

Simulated data

We used the R package Splatter [21] to generate simulated

scRNA-seq counts data of different batches with similar cell-

type compositions. We simulated two batches with 2000 and

1000 cells considered as source and target dataset, respectively,

and each cell has 10 000 genes. Each batch was uniformly

split into four cell groups with cell proportion set to 0.25 by

the parameter group.prob. To simulate datasets with different

magnitudes of batch effects, we adjusted the batch parameter

batch.facLoc and batch.facScale with increasing values {0.2, 0.4,

0.6, 0.8, 1.0} where larger values corresponding to stronger

batch effects. For brevity, we set batch.facLoc=batch.facScale.

To simulate datasets with different magnitudes of clustering

difficulty, we set the parameter de.fracScale to 0.2 for simulated

datasets with weak clustering signal and 0.3 for simulated

datasets with strong clustering signal. Simulation was run five

times with different random seeds and average results were

reported. For other parameters, default values were used unless

otherwise specified.

Cross-platforms datasets

The human Peripheral Blood Mononuclear Cells (PBMC) scRNA-

seq data were retrieved directly from the SeuratData package

with dataset name ‘pbmcsca’ [22]. The data consist of seven

batches from seven different sequencing platforms.We removed

the cells annotated as ‘Unknown’ and the resulting datasets

contains a total of 30 975 cells and each cell has 33 694 genes.

We combined the data from the 10× Chromium (v2) and 10×

Chromium (v3) platform as source data and the rest five plat-

forms: CEL-Seq2 (CL), Drop-seq (DR), inDrop (iD), Smart-seq2

(SM2) and Seq-Well (SW) as target data. As a result, we have five

pairs of cross-platform datasets: 10×-CL, 10×-DR, 10×-iD, 10×-

SM2 and 10×-SW. For all the datasets, raw counts were extracted

from the Seurat object for further processing.

Cross-species datasets

The human and mouse pancreas data were downloaded

from SingleCellNet GitHub page where five ready-to-use

datasets are provided. For data batch generated by Baron,

Segerstolpe and Tabula Muris (TM) cell atlas, raw counts are

provided for further processing. For datasets from Murano

and Xin, normcounts are provided. Following the filtering

step in previous benchmark study [23], we removed the cells

labeled as ‘unclear’, ‘co-expression’, ‘unclassified’, ‘unclas-

sified endocrine’, ‘alpha.contaminated’, ‘beta.contaminated’,

‘delta.contaminated’ or ‘gamma.contaminated’, and merged

‘activated_stellate’, ‘PSC’ and ‘quiescent_stellate’ cells into

‘stellate’. The resulting datasets contain a total of 17 574 cells.
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To obtain compatible gene names for cross-species analysis,

we used the homologous genes provided by SingleCellNet to

convert gene names and only the intersection gene set between

the human data and mouse data were kept. To construct a large

source with enough training samples and cover more cell types

in the source, we combined the mouse data from the Baron and

TM as source data.

Spatial transcriptomic datasets

Wedownloaded twomouse brain (hypothalamic preoptic region)

datasets from Gene Expression Omnibus (GSE113576) and Dryad

repositories, respectively [24]. The spatial transcriptomic dataset

has 64 373 cells measured with spatially resolved multiplexed

error robust fluorescence in situ hybridization (MERFISH) and

the scRNA-seq dataset has 30 370 cells measured by 10×

Chromium; 10× data have full transcriptome with 22 067 genes,

while MERFISH data have only 154 targeted genes.We combined

the two datasets with the 154 intersecting genes.

COVID-19 datasets

The COVID-19 immune atlas was downloaded from GEO

(GSE158055), which was generated by Single Cell Consortium for

COVID-19 in China [25]. It has 1 462 702 single cells in the lung

and peripheral blood. We used this dataset as source dataset.

The COVID-19 Immunodeficiency PBMC dataset was download

from https://www.covid19cellatlas.org/ and has 56 840 cells. We

used it as target dataset.

Preprocessing

Seurat R package (version 3.2.0) was used for preprocessing.

For both the simulated and real datasets (except for Murano,

Xin and MERFISH where counts are already normalized), the

counts matrix were normalized by the NormalizeData function

in Seurat with default ‘LogNormalize’ normalization method

and a scale factor of 10 000. Top 2000 highly variable genes

were selected based on the log-normalized counts using the

FindVariableFeatures function with default ‘vst’ method. For real

datasets, the cell-type annotations from the corresponding pub-

lications were considered as the ground truth for evaluations.

Because the brain data have preselected markers, we did not

select variable gene but used all the 154 intersecting genes.

The datasets analyzed in this study are summarized in

Table S1, see Supplementary Data available online at http://bi

b.oxfordjournals.org/.

The architecture of scAdapt

Our scAdapt model includes two modules. The classification

module, based on cross-entropy loss and VAT loss, aims to

improve the accuracy of cell annotation using both labeled

source and unlabeled target data. The batch correction module

contains two loss. The adversarial domain adaptation loss aims

to reduce distribution discrepancy at embedding space of source

and target, while the semantic alignment loss can make the

embeddings better clustered and more separable. We optimized

these twomodules jointly in order to improve domain alignment

and final classification simultaneously.

The overall structure of scAdapt is illustrated in Figure 1.

It consists of a feature extractor G with two hidden layers, a

domain classifier D with two hidden layers and a label predictor

F with a linear output layer followed by a softmax operation. The

input includes source gene expression matrix Xs = [xs1, . . . , x
s
ms
] ∈

Rms×n ofms labeled cells with Ys = {ys
i }

ms

i=1
being the corresponding

labels and target gene expressionmatrix Xt = [xt
1, . . . , x

t
mt
] ∈ Rmt×n

of mt unlabeled cells, where n is the number of common genes

shared by the source and target data. In domain adaptation

setting, Xsand Xtare assumed to be different but related [16].

To minimize the source sample classification error with

known labels, standard cross-entropy loss is used as below

LCE = −
1

ms

∑ms

i=1

∑K

c=1
ysi,c log

(

pi,c
)

, (1)

where ysi,c is a binary indicator (0 or 1) if the cell label c is the

correct label for cell i, pi,c is the predicted probability of the cell i

belonging to cth cell label and K is the number of class.

We used VAT to incorporate the information of data distribu-

tion from unlabeled data,which can better estimate the decision

boundary between different classes [17]. VAT is an effective data

augmentation technique which does not need prior label infor-

mation and is hence applicable to semi-supervised learning. It

assigns similar labels to each input data and its neighbors in

the adversarial direction where the perturbation will alter the

model’s output distribution the most. Then, the model is robust

to small perturbations or noises in the inputs. The loss function

of VAT is given by

LVAT (Xt, θ) = DKL [p (Yt|Xt, θ) ,p (Yt|Xt + rvat, θ)] − 2‖F (G (Xt))‖∗,

wherervat = argmax
r;‖r‖2≤ǫ

DKL[p(Yt|Xt, θ),p(Yt|Xt + r)], (2)

where rvat denotes the virtual adversarial perturbation maxi-

mizing the difference between the model output of perturbed

input and nonperturbed input, and θ is the model parameter

to train. The output distribution is parameterized as p(Yt|Xt, θ),

and DKL[·, ·] is KullbackLeibler divergence that measures the dif-

ference between two probability distributions. The last penalty

term ‖F(G(Xt))‖∗
in (2) is designed to improve both the prediction

discriminability and diversity, and ‖ · ‖∗ is the nuclear-norm [18].

To learn the domain-invariant features, adversarial adapta-

tion loss is adopted, where the feature extractor G and domain

classifier D are trained by playing a two-player minimax game:

the first player is domain classifier which distinguishes whether

the feature is from the source domain or target domain, and the

second player is feature extractor which aims to output domain-

invariant features to confuse the domain classifier. Domain

alignment is expected when the game reaches an equilibrium.

Formally, the domain classifier D is trained by minimizing the

binary cross-entropy loss

LDA = −
1

ms

∑ms

i=1
log

(

D
(

G
(

xs
i

)))

−
1

mt

∑mt

j=1
log

(

1 − D
(

G
(

xt
j

)))

,

(3)

while the feature extractor G is trained to maximize the LDA loss

(fool the domain classifier D). In order to update the parameters

of D and G simultaneously, gradient reverse is used to flip the

sign of the gradient between D and G during backpropagation

[10].

Besides the global domain-invariance, discriminability must

also be preserved, which ensures the embeddings of same class,

but different domains are mapped nearby. An intuitive solution

is to perform semantic alignment for samples of each class
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Figure 1. The overall structure of scAdapt for cell-type classification and batch correction on source and target dataset. With source and target data as input, the

feature extractor G learns to capture low-dimensional embedding Zs and Zt which are then used to train the label predictor F with the cross-entropy loss and VAT

loss, respectively. At the embedding space, batch correction is achieved at global- and class-level: adversarial domain adaptation loss is employed to perform global

distribution alignment and semantic alignment lossminimizes the distance between the labeled source centroid and pseudo-labeled target centroid. The target pseudo

label is estimated by label predictor F.

directly. However, the explicit alignment for each class is impos-

sible since no label information provided for target domain. We

approached the problem by assigning pseudo labels to target

samples with the classifier F and then explicitly align the cen-

troid for each class in source and target domain [20].The centroid

is defined as the mean embedding of each class. For each target

class, all samples with correct or wrong pseudo labels are used

for centroid calculation, and thus the noise or bias brought by

partial false pseudo labels are expected to be suppressed by

correct pseudo labels with a dominating portion. We formulate

the following semantic alignment loss to minimize the distance

between the target centroids and their corresponding source

centroids:

LSM (Xs, Xt) =
1

K

∑K

k=1

∥

∥

∥
Ck
s − Ck

t

∥

∥

∥

2

2
+

1

ms

∑ms

i=1

∥

∥

∥
G

(

xs
i

)

− Ck
s

∥

∥

∥

2

2
, (4)

where Ck
s and Ck

t denote the source and target centroids, respec-

tively. The second term of (4) is designed to penalize big intra-

class distances and enforce better cluster compactness [26].

The overall loss function can be formulated as

Loverall = LCE + λ0LVAT + λ1LDA + λ2LSM, (5)

where λ0, λ1 and λ2 are the regularization coefficients controlling

the contribution of VAT, global domain alignment and semantic

alignment to the total loss function, respectively.

Identifying cell-type important genes

Since neural networks are often considered as black box models

with no clear interpretation, examining the importance of each

gene relative to classification output is favorable for understand-

ing the reason behind classification decisions.We identified key

genes for each cell type by activationmaximizationmethod [27].

Formally, let θ be the fixed model parameters after training the

network, and hi(θ , x) be the activation of ith neuron in the last

layer of neural network with input x, i.e. the classification score

for cell type i. Activation maximization looks for input patterns

which maximize the classification score

x∗ = argmax
x

hi (θ , x) . (6)

A locally optimal solution of (6) can be found through gra-

dient ascent in the input space, where the gradient of hi(θ , x)

with respect to x was computed to iteratively update the inputx.

It should be noted that the optimization was performed with

respect to the input x, which is different from the training proce-

dure of neural network for optimizing the model parameters θ .

The inputxwas initializedwith a zero vector and updated for 100

iterations with learning rate set to 1. The changes of resulting

x∗ compared with the initialization values were calculated as

the gene importance score. To evaluate whether the identified

top-important genes are reliable, we selected the top genes with

the largest importance score for each cell type and compared

themwith cell-type markers in the PanglaoDB database [28] and

the marker gene reported in original publication [24]. We also

performed Gene Ontology (GO) enrichment analysis on these

selected genes, using the R package clusterProfiler [29].

Hyper-parameters setting

All the neural network layers are fully connected. The two hid-

den layers of feature extractor G have 512 and 256 nodes, respec-

tively. For spatial transcriptomic data with only 154 genes,we set

the nodes in each hidden layer as 128 and 128. The size of hidden

layers in domain classifier D is set to 1024. Rectified linear unit

function is used as activation function for the hidden layers

while softmax activation function and sigmoid function applied

to the last layer of F and D, respectively. The network is trained
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by mini-batch stochastic gradient descent with a momentum of

0.9 and a weight decay of 5×10−4.We follow the same annealing

strategy of learning rate as described in [10], i.e. the learning rate

ηp is adjusted following ηp = η0/(1 + ap)
b
, where p is the training

progress linearly increasing from 0 to 1, η0 is the initial learning

rate set to 0.001, a=10 and b=0.75. The batch size is set to 256.

Throughout all experiments, we set regularization parameter

λ0 = 0.1λ, λ1 = λ and λ2 = λ, where the penalty parameter λ is

updated from 0 to 1 by a progressive schedule according to Ganin

et al. [10]

λ =
2

1 + e−10t
− 1, (7)

where t is the training progress linearly increasing from 0 to 1.

With this schedule, the model can first focus on training the

model with labeled source data and then focus on the optimiza-

tion of VAT, global domain alignment and semantic alignment

whose information are noisy and inaccurate at early training

stages. The method was implemented based on PyTorch [30].

Benchmarking classification methods

To evaluate the performance of scAdapt, we benchmarked it

against other cell-type annotation tools, including Seurat V3,

scmap, scPred, CHETAH, SingleR, singleCellNet and SVM. For

Seurat V3, we used both the CCA-based and PCA-based label

propagation to evaluate whether the classification can benefit

from aligned data. The default hyperparameters recommended

in these annotation tools and accompanying tutorials were used

for performance evaluation.

Evaluation metric

We evaluated the classification performance of each method

using the accuracy score, which is defined as the proportion of

correctly annotated cells. We computed the accuracy for each

class in the test data and reported averaged accuracy across

all the classes. Throughout the evaluation, the previously pub-

lished cell type annotations provided by original datasets were

considered as ground truth.

Benchmarking batch correction methods

Seurat V3, fastMNN, Harmony and LIGER were used as com-

peting methods. We evaluated the performance by quantitative

measure and visual inspection. Silhouette score and divergence

score were used to measure the quality of batch correction

[31]. An accurate batch correction method should result in a

high silhouette score (preserving the original structure of the

data) and low divergence score (keeping the same-type cells

across batches well mixed). Uniform manifold approximation

and projection (UMAP) was used for visualizing cells in a two-

dimensional space [32]. During the benchmark, all competing

methods were run with their default hyperparameters, or the

hyperparameters provided in the accompanying tutorials.

Evaluation metric

We used divergence score to quantify how well the same pop-

ulation between different batches is mixed after batch correc-

tion. A smaller divergence score means better mixing of the

same cell population. The quality of mixing is estimated by the

universal k-nearest-neighbor (kNN) divergence [33]. The kNN

divergence between UMAP embeddings Zs,l and Zt,lof class l can

be formulated as

DkNN

(

Zs,l‖Zt,l

)

=
d

n

∑n

i=1
log

v(i)

ρ(i)
+ log

m

n − 1
, (8)

where d is dimension size of embeddings, m and n are the

number of source and target samples in class l, respectively, ρ(i)

is the Euclidean distance between sample i and its kNNs in the

same batch, and v(i) is the distance from sample i to its kNNs

in the other batch. The average kNN divergence over all classes

is calculated as divergence score. In all experiments for batch-

correction evaluation, k was set to 30 for kNN computation.

Evaluation only by divergence score is not sufficient, sincewe

can obtain a perfect score by randomly mixing the data regard-

less of the cell type. Thus, we used silhouette score to quantify

howwell different cell types are separated after batch correction

and ensure that datasets integration can conserve true biological

signals in original datasets. Let a(i)denote the average distance

between cell i to all other cells in the same cluster and b(i)

be the average distance between the cell i and cells in the

next closest cluster. The distance is calculated using Euclidean

distance based on the UMAP embeddings of the batch-corrected

data. The silhouette coefficient of cell i can be formulated as

S(i) =
b(i) − a(i)

max
{

a(i),b(j)
} ∈ [−1, 1] , i = 1, . . . ,n. (9)

The average silhouette coefficient across all cells can be cal-

culated as silhouette score. A higher silhouette score indicates

better cell-type assignment.

Results

To showcase the strength of scAdapt, we analyzed simulated

dataset generated by ‘Splatter’ and real scRNA-seq datasets with

different sequencing platforms and species, and of spatial tran-

scriptomics. The scAdapt was compared with seven cell-type

classification methods and four batch correction methods, and

scAdapt was shown to consistently outperform these existing

methods in both cell-type annotation and batch correction.

Performance on the simulated dataset

We first evaluated the classification accuracy under different

degrees of batch effects with weak clustering signal strength

(de.facScale=0.2). As shown in Figure 2a, the accuracies of all

classification methods decrease with increasing batch.fracScale,

confirming the classification challenges brought by the batch

effects. The scAdapt always outperforms the competing

methods across all batch effects settings: the accuracy of

scAdapt is ∼0.98 until the batch.fracScale value increases to

0.6 and remains >0.94 at batch.fracScale=1.0. The superior

performances show that scAdapt can effectively reduce per-

formance degradation brought by batch difference, even under

high batch effects. By comparison, the accuracy of competing

methods drop dramatically as the batch.fracScale increases.

Although SingleR achieves the second highest performance

when batch.fracScale≤0.6, its accuracy demonstrates a sharp

drop from 0.85 to 0.61 when batch.fracScale changes from 0.6 to

1.0. At the largest batch.fracScale, Seurat-PCA has a relatively

low accuracy of 0.39 which is improved to 0.69 by Seurat-CCA
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Figure 2. Benchmarking of scAdapt against seven classificationmethods and four batch correctionmethods on simulated data with two batches and four different cell

types. (a) Average accuracy under increasing batch.fracScale values where larger values corresponding to stronger batch effects. (b) The integration quality measured by

divergence score versus silhouette score at batch.fracScale=1.0. Specifically, a lower divergence score means better cell mixing across datasets and a higher silhouette

score indicates better cell type assignment. (c) UMAP plots colored by batch and cell type at batch.fracScale=1.0.

(78% improvement), confirming that batch-correction in Seurat-

CCA can enhance the classification model under a high batch

difference.

Next, we evaluated the performance of scAdapt and other

four batch correction methods using the most challenging sim-

ulation setting with batch.fracScale =1.0 (Figure 2b and c). Ideally,

there should be four distinct cell groups (each representing a

cell type) in the UMAP visualization after the batch correction,

and the cells from both batches are well mixed in each group.

Visualization of the uncorrected data shows that the cells are

distinctly grouped by batch, resulting in the lowest silhouette

score (−0.026) and the highest divergence score (4.18). After

removing batch effects by scAdapt, the batch distinctions are

effectively removed with the same-type cells across batches

uniformly mixed while maintaining the cell-type structure in

original batches. scAdapt achieves not only the highest silhou-

ette score (0.80) but also presents the lowest divergence score

(0.05) over others. Although Harmony and LIGER also have low

divergence score (≈ 0.10), their silhouette scores are much lower

(≈ 0) due to over-correction problem with all cell types mixed

together. The fastMNN method, although produces a proper

balance of batch mixing and cell type mixing with a divergence

score of 0.75 and a silhouette score of 0.43, suffers from under-

correction where the cell types across batches are not well

aligned despite relatively clear separations between cell types.

Seurat produces the highest divergence score (2.5) and a low sil-

houette score (0.24) since it fails to perform cell-type alignment

and the cell types in the 2nd batch are far less discernable. These

results suggest that scAdapt improves batch correction relative

to unsupervisedmethods that ignore label information of source

data.

To demonstrate the separate contributions of different

components in scAdapt, we performed ablation studies with

batch.fracScale=1.0 for three variants of scAdapt: Baseline

(removing both VAT and DA module from scAdapt) or removing

either module. As shown in Figure S1a, see Supplementary Data

available online at http://bib.oxfordjournals.org/, the addition

of VAT (Baseline+VAT) can notably improve the classification

accuracy relative to the baseline, while the addition of DA

(Baseline+DA) is beneficial for batch correction. The full

model by combing both components can further enhance the

performance of batch correction through guiding cell-type

alignment with more accurate pseudo labels.We also visualized

the embeddings of scAdapt and its three variants through

UMAP in Figure S1b,see Supplementary Data available online

at http://bib.oxfordjournals.org/. For the Baseline model, two

batches are completely mismatched and the four clusters in the

target batch essentially overlap with each other, making it hard

to separate the cells. By using the auxiliary information from

the target sample, Baseline+VAT can separate the cell types

well but ignores alignment across batches. On the other hand,

Baseline+DA aligns the cell types correctly, but the group 1 and

group 2 are not well separated. By comparison, scAdapt can

well align the same cell types across batches and discriminate
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different cell types, confirming the necessity of combining VAT

and DA for batch correction.

We also evaluated the performance on datasets with strong

clustering signal strength (de.facScale=0.3) where the uncor-

rected data have low cell type noise and distinguishable cluster

structure in each batch (Figure S2, see Supplementary Data

available online at http://bib.oxfordjournals.org/). As expected,

all methods (except LIGER) show improved performance in the

easy dataset, while scAdapt still outperforms the competing

methods.

Performance on the cross-platform datasets

In realistic scenario, the source and target datasets are often gen-

erated from different experimental platforms in different labs.

To evaluate the performance of scAdapt on this realistic setting,

we conducted cross-platform test on five paired source-target

PBMC datasets where the cell types from the source dataset

were mapped to those in the target dataset. In this setting, each

dataset is profiled by different sequencing platforms.

As shown in Figure 3a, scAdapt consistently outperforms

other methods by the accuracy on the five test pairs, indicating

that integrating source and target dataset can make the classifi-

cation method resilient against batch effects. The detailed con-

fusion matrices between cell classification show that scAdapt

has a more balanced performance on each cell type with mini-

mum accuracy >0.75, compared with other methods with mini-

mum accuracy ranging from 0.31 to 0.62 (Figure S3a, see Supple-

mentary Data available online at http://bib.oxfordjournals.org/).

The performance drop of competingmethodsmainly come from

the misclassification of closely related cell types. For example,

the second ranked Seurat-CCAmethod incorrectly assigned 21%

of Cytotoxic T cell as CD4+ T cell, and 10% of them to Natu-

ral killer cell. For completeness, we also ran CHETAH, SingleR,

singleCellNet and SVM with gene expression data corrected by

Seurat V3 (other methods failed to run over corrected datasets)

and observed that using Seurat V3 correction can improve the

performance of CHETAH,SingleR, singleCellNet and SVMby 15, 4,

3 and 4%, respectively (Figure S3b, see SupplementaryData avail-

able online at http://bib.oxfordjournals.org/). It is worth noting

that the improved accuracies of CHETAH (0.83), SingleR (0.84),

singleCellNet (0.8) and SVM (0.8) are still lower than that of

scAdapt (0.86).

In many studies, the target data may contain novel cell types

absent in the collected source datasets. Good classifier should

provide low classification confidence scores for these unknown

cells and high scores for known cells. To test whether scAdapt

can identify these novel cell types, we trained it on the source

dataset with ‘Cytotoxic T cell’ cells removed and tested it on

the five target datasets. We performed false positive rate (FPR)

control experiments to evaluate the accuracy for known and

unknown cells. Here, FPR is calculated as the ratio between

the number of unknown cells falsely assigned as known and

the total number of unknown cells that should be rejected.

We chose SingleR and Seurat-CCA for comparison since they

demonstrated overall top performance in the benchmark. The

evaluation of Seurat and SingleR with ‘unassigned’ function was

following the previous study [9], which can examine their pre-

diction/confidence scores by assigning the cells with the lowest

values to be ‘unassigned’. In Figure S4a, see Supplementary Data

available online at http://bib.oxfordjournals.org/, at the FPR of

0.05 and 0.1, we showed that scAdapt consistently achieves the

highest accuracy of 0.55 and 0.61 for known cells, respectively.

The accuracies of SingleR (0.29 and 0.33) and Seurat-CCA (0.40

and 0.48) are much lower with the same FPR cutoffs, indicating

the advantage of scAdapt in classification accuracy of known

and unknown cell type. When the ‘Cytotoxic T cell’ are not

removed, scAdapt achieves similar high accuracy at the FPR of

0.05 and 0.1 (Figure S4b, see SupplementaryData available online

at http://bib.oxfordjournals.org/).

The quantitative performance of the five integration meth-

ods is summarized in Figure 3b. As expected, scAdapt is the

top method with lowest divergence score and highest silhouette

score across all dataset pairs, which is congruent with visualiza-

tions plots in Figures 3c and S5, see Supplementary Data avail-

able online at http://bib.oxfordjournals.org/. Specifically, diver-

gence score is reduced by 17–61% on top of LIGER, fastMNN,

Harmony and Seurat V3, respectively. The silhouette score is also

improved substantially by 65–110% when compared with the

four competing methods. Although the competing methods can

separate the distinct cell types such as B cell and Megakaryocyte

well, the highly similar cell types (CD4+ T cells, Cytotoxic T cells

and Natural killer cells) [34] are tightly connected in their visu-

alization plots. Since the target data are unlabeled in practice,

it would be difficult to visually distinguish them as different

cell types. In contrast, scAdapt is able to visibly separate three

clusters, highlighting the contribution of the proposed semantic

alignment loss and accurate pseudo label.

Compared with batch-corrected embedding space, batch

correction in the gene expression space is more useful for down-

stream analysis like the identification of differentially expressed

(DE) gene. To address this issue, we added a decoder layer

to reconstruct batch-corrected gene expression from batch-

corrected embeddings with mean squared error loss. We used

the DE gene detection as a performancemeasure to evaluate the

quality of corrected gene expression. Seurat and fastMNN that

produce batch-corrected gene expression matrix were chosen

for comparison. We identified DE genes between ‘B cell’ and

all other cells using Wilcoxon Rank Sum test. The DE gene

identified in uncorrected source and target data individually

were considered as ‘working truth’ (logFC>0.25 and adjusted

P-value<0.01). We compared the overlap of equal number of

top-scoring batch-corrected DE genes and uncorrected (source

and target) DE genes and computed true positive rate (TPR)

for each comparison. From Figure S6a, see Supplementary Data

available online at http://bib.oxfordjournals.org/, we found that,

in both the source and target comparisons, scAdapt achieves

higher TPR (0.74 and 0.68) than those in Seurat (0.71 and 0.55)

and fastMNN (0.67 and 0.55) results. These results indicate

that the gene expression reconstructed by scAdapt benefits

from batch-corrected embeddings and accurately retain original

gene expression information. Furthermore, we investigate the

impact of different normalization methods on the performance

(Figure S6a–c, see Supplementary Data available online at http://

bib.oxfordjournals.org/). Besides LogNormalize, we included the

centered log ratio (CLR) normalization from the Seurat package

and the multiBatchNorm from the batchelor package [11] for

comparison. The multiBatchNorm will rescale the size factors

between batches to make them comparable and then perform

LogNormalize. From Figure S6a–c, see Supplementary Data

available online at http://bib.oxfordjournals.org/, we found that

the advantage of scAdapt is consistent across the considered

three normalization methods. CLR reduces the average TPR by

10.3% on top of LogNormalize and thus is not suitable for batch

correction processing. multiBatchNorm does not demonstrate

the performance improvement, and the potential gain may

be neutralized by the batch correction methods. Thus, we

recommend LogNormalize for preprocessing.
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Figure 3. Comparison of classification methods and integration methods for five pairs of cross-platform human PBMC dataset. (a) The overall accuracy of different

classification methods across the five test pairs. (b) Divergence score and silhouette score of different integration methods. (c) UMAP plots of the 10×-iD test pair

colored by batch and cell type.

Performance on the cross-species datasets

Similar to the test in singleCellNet andGarnett [35],we evaluated

scAdapt on cross-species datasets, which is a more challenging

scenario with large distribution difference than cross-platform.

The differences mainly come from two sources of variations:

species and platforms. We used mouse pancreas data from the

Baron andTMcell atlas as source data, andhumanpancreas data

from the Baron, Segerstolpe, Murano and Xin as target data. Dif-

ferent from the slight superiority in cross-platform experiments,

scAdapt achieves much higher average accuracy (0.93) than the

second-ranked scmap (0.81), confirming the ability of scAdapt

to deal with large difference between species (Figure 4a). Seurat-

CCA,which achieves competitive performance in cross-platform

test, suffers an accuracy drop of 22.5% compared with scAdapt.

Other six methods are low-performing with accuracy <0.7.

Further inspection of the classification by Sankey plots reveals

that the competing methods cannot effectively differentiate

several major cell types (Figure S7a, see Supplementary Data

available online at http://bib.oxfordjournals.org/). For the alpha

cell type that accounts for the highest proportion (35%) in target

data, Seurat-CCA, Seurat-PCA, scPred and SVM only correctly

classify 55, 26, 31 and 65% cells, respectively. For beta cell

type with the second highest proportion (26%), 33–89% cells

are correctly categorized by competing methods. In contrast,

the accuracy of scAdapt on these two cell types is both larger

than 0.95. We also performed batch corrected classification

evaluations as done in the cross-platform test and found that

the four competing methods can benefit from correction with

an accuracy of 0.81 (CHETAH), 0.86 (SingleR), 0.78 (singleCellNet)

and 0.81 (SVM) (Figure S7b, see Supplementary Data available

online at http://bib.oxfordjournals.org/) but are still lower than

that of scAdapt (0.93). These results suggest the effectiveness

of scAdapt to overcome the variations from both species and

platform.

The divergence score and silhouette score show that scAdapt

is again the leading method for batch correction (Figure 4b).

Similar to simulation and cross-platform scenario, fastMNN

ranks the second for silhouette score, despite the relatively poor

data mixing. Harmony and LIGER produce 69 and 83% lower

silhouette scores than scAdapt, respectively. Visual inspection

reveals that the performance degradation of Harmony and

LIGER mainly come from under-correction (Figures 4c and S8,

see Supplementary Data available online at http://bib.oxfordjou

rnals.org/). For example, part of the alpha and beta cells are

separated as human-specific cell types in the xin dataset, which

is not consistent with the original assignments. Additionally,

scAdapt can clearly separate acinar and ductal cells which

come from the same progenitors and are closely associated

[36], while none of the competing methods can separate them in

all of the cross-species integration tests. These results suggest

that scAdapt is able to maintain biological heterogeneity while

effectively reducing unwanted species-specific noise.
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Figure 4. Comparison of classification methods and integration methods for four cross-species pancreas dataset pairs. (a) Heatmap showing the accuracy of different

classificationmethods. (b) Divergence score and silhouette score of different integrationmethods. (c) UMAP plots of the Baron human dataset mapped to mouse source

datasets (Baron and TM) colored by batch and cell type.

Due to the difference between species, the reference data

may not contain all cell types in the query data. In order to

assess how well scAdapt discover new or unknown cell types,

we trained it on the mouse dataset with ‘alpha’ cells removed

and tested it on the human Baron dataset. We labeled the cell

‘unassigned’ if its highest output probability was smaller than

0.5. We found that scAdapt achieved a high accuracy for known

cell types (accuracy=0.9), while 95% of ‘alpha’ cells are correctly

recognized as ‘unassigned’. Removing ‘beta’ cells obtains similar

results with an accuracy of 0.95 (known) and 0.89 (‘beta’). The

potentially new cell types in theUAMPvisualizations also occupy

a distinct region and are clearly distinguishable (Figure S9, see

Supplementary Data available online at http://bib.oxfordjourna

ls.org/). These results show that scAdapt is able to identify cell

types that are not in the reference dataset.

Application to the spatial transcriptomic dataset

Current scRNA-seq technologies require cell dissociation, result-

ing in loss of the spatial localization. Novel spatial transcrip-

tomics methods, such as MERFISH [24], can retain spatial cell

information but capture only a small number of genes that can

be simultaneously measured per cell. With the limited shared

information, it is challenging to find and merge similar cell

types across these two data types. To assess how well scAdapt

performs in this setting, we obtained two datasets profiled from

the hypothalamic preoptic region of mouse brain, where we

used the dissociated scRNA-seq dataset sequenced by the 10×

Chromium as source and the spatial transcriptomics dataset

measured with MERFISH as target. These two datasets have only

154 overlapped genes.

As shown in Figures 5a and S10, see Supplementary Data

available online at http://bib.oxfordjournals.org/, scAdapt

achieves an average accuracy of 0.87 over the nine cell types

in target dataset, higher than the accuracies of competing

classificationmethods ranging from 0.35 (scPred) to 0.78 (Seurat-

CCA). The cell types predicted by scAdapt also demonstrate

more consistent patterns in spatial distribution than competing

methods in the previous report [24] (Figure S11, see Supple-

mentary Data available online at http://bib.oxfordjournals.o

rg/). For example, the predicted ependymal cells by scAdapt

are enriched in a single layer lining the third ventricle, while

this pattern is missed by Seurat-CCA since it misclassifies most

of the ependymal cells as the inhibitory neurons. The batch

correction results in Figure 5b and S12, see Supplementary

Data available online at http://bib.oxfordjournals.org/, suggest

that scAdapt successfully maps cells of the same cell types

between the two datasets into a shared embedding, with lower

divergence score (0.30) and higher silhouette score (0.47) than

alternative approaches (divergence score: 0.33–2.50, silhouette

score: 0.20–0.43).

To make our neural network model more interpretable, we

used the activation maximization method to identify the most

important genes for predicting certain cell type.We listed the top

10 genes with the largest importance scores by order in Table S2,

see Supplementary Data available online at http://bib.oxfordjou
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Figure 5. Predicting cell types in spatial transcriptomic dataset (MERFISH) with dissociated scRNA-seq (10× Chromium) dataset from the hypothalamic preoptic

region of mouse brain. (a) Heatmap for the confusion matrix of our method with average accuracy in the bracket. (b) UMAP plots of the MERFISH dataset mapped to

10× Chromium reference by our method with divergence score and silhouette score in the bracket. Cells are colored by batch (left) and cell type (right). (c) Expression

patterns of the top cell-type-specific marker genes identified by activationmaximization in MERFISH dataset. Cells are colored based on the log-normalized expression

of marker gene. The gene names are listed in the title of the panel.

rnals.org/. We found that among the nine top-1 marker genes

identified by ourmethod for each cell type, six genes (Excitatory:

Slc17a6, Inhibitory: Gad1, Immature_oligodendrocyte: Pdgfra,

Microglia: Selplg, Mural_pericyte: Myh11, Astrocytes: Aqp4) are

the same as the ones reported in original publication [24],

and the other three genes (Mature_oligodendrocyte: Ermn,

Endothelial: Slco1a4, Ependymal: Ccnd2) are in the marker gene

lists of corresponding cell type from the PanglaoDB database

[28]. In Figure 5c, these genes also exhibited clear expression

patterns correlated with corresponding cell types. The results

of GO enrichment analysis on the top 10 genes of each cell type

are presented in Figure S13, see Supplementary Data available

online at http://bib.oxfordjournals.org/. We can see that the

selected genes are significantly enriched onGO terms relevant to

the biological processes of nervous system, such as glutamate

secretion term (GO: 0014047) for excitatory cell, myelination

(GO: 0042552) for immature oligodendrocyte cell. These results

suggest that the identified genes are consistent with prior

biology knowledge and verify the reliability and interpretability

of our scAdapt model.

We also identified DE genes from the batch-corrected expres-

sion matrix to evaluate whether the batch correction can pre-

serve the results of DE analysis run on the original datasets. We

selected DE genes by performing DE analysis between inhibitory

cells and all other cells using the Wilcoxon rank sum test with

log FC>0.25 and adjusted P-value<0.01.We compared the inter-

section of DE genes from the batch-corrected dataset and uncor-

rected dataset to evaluate whether the batch correction method

can preserve the results of DE analysis on the original datasets.

From Figure S14, see Supplementary Data available online at

http://bib.oxfordjournals.org/, we found that gene expression

corrected by scAdapt retain more raw DE genes than those by

Seurat and fastMNN (76 versus 67 and 69). Further GO enrich-

ment analysis shows that the DE genes detected by scAdapt are

significantly enriched for GO terms relevant to the process of

neural communication and development, such as neuropeptide

signaling pathway and positive regulation of neuron projec-

tion development (Figure S15, see Supplementary Data available

online at http://bib.oxfordjournals.org/). These results suggest

that scAdapt can effectively preserve original biological features

after batch correction.

Running time and memory evaluation

We tested the scalability of scAdapt on large-scale datasets.

Recently, a single-cell transcriptome atlas was generated by

Single Cell Consortium for COVID-19 in China, which has 1.46

million single cells in the lung and peripheral blood. We used

this dataset as source dataset, and a COVID-19 Immunodefi-

ciency PBMC dataset as target dataset. The target dataset has

56 840 cells. We downsampled the source dataset per cell type

to generate different sample sizes (14 k, 140 k, 700 k and 1.46

million) and profiled the memory usage and the computing

time of classification method and batch correction method. All

analyses were performed on a server with Intel(R) Xeon(R) CPU

E5-2650 v4 (2.20GHz), 256 GB RAM and GeForce GTX 1080Ti GPU.

As shown in Table S3, see Supplementary Data available online

at http://bib.oxfordjournals.org/, the computing time of scAdapt

increases with respect to the increase of sample size, ranging

from about 1 min for 14 k cells to 26 min for 1.46 million cells,
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which are faster than Seurat and SingleR that need 51 min and

142 h for 1.46 million cells, respectively. Under the pretrain-

finetune mode, the runtime of scAdapt can be further reduced

to 21 (pretrain) and 1 min (finetune) for 1.46 million cells. In

terms of memory usage, all methods consumed similar memory

with increasing cells and required memory less than 100 GB

for 1.46 million cells. Besides, scAdapt also achieves higher

accuracy (0.91) than Seurat (0.81) and SingleR (0.87). As for batch

correction methods (Table S4, see Supplementary Data available

online at http://bib.oxfordjournals.org/), only fastMNN was able

to complete runs on all sample sizes (from 7 min to 2.4 h),

while the remainder did not complete due to memory allocation

error. We also find that the average memory consumption of

batch correction methods is larger than those of classification

methods. fastMNN requires 175 GB memory to run the biggest

dataset, which is higher than the memory requirement of clas-

sification methods at the same sample size (SingleR: 90 GB,

Seurat: 82 GB, scAdapt: 75 GB). By comparison, scAdapt performs

classification and batch correction simultaneously, which can

save more computational resources. scAdapt also provides the

option for CPU implementation. Without GPU acceleration, the

runtime of scAdapt increases to 44 min for 1.46 million cells,

slightly faster than that of Seurat. We also used the Covid-19

dataset with 1.46 million cells as large source and large target

dataset.We found that SingleR and all batch correctionmethods

cannot finish this task within 24 h or hit an out of memory error

(Table S5, see SupplementaryData available online at http://bib.o

xfordjournals.org/). Seurat is faster but also took 21 h. scAdapt

requires much shorter time with 160 min and the finetune pro-

cess only consumes 20 min. These results reflect that scAdapt is

computationally efficient when analyzing large-scale dataset.

Discussion

In this work, we developed a novel virtual adversarial domain

adaptation framework, scAdapt, to perform cell-type classifi-

cation for datasets with batch effects. The virtual adversarial-

based semi-supervised learning in scAdapt improves classifica-

tion accuracy using both labeled source dataset and unlabeled

target dataset, and domain alignment removes batch effects in

the embedding space by making use of label information in the

source. For quantitative benchmarks, we used simulated scRNA-

seq datasets that vary in the intensity of batch effects, real cross-

platform, cross-species, spatial transcriptomic and COVID-19

immune datasets. Experiments with quantitative measure val-

idated the superiority of scAdapt. Visual inspection also demon-

strated that the method preserved discriminative cluster struc-

ture present in the original datasets with the same types of cells

well mixed. To gain the biological interpretability behind model

decisions, we also identified cell-type specific marker genes and

one portion of them were validated by the PanglaoDB database.

We demonstrated that our method could also overcome

strong batch effects, while other classification methods did

not perform well when there is large batch difference between

source and target datasets. Additionally, our method is robust

to remove batch effects in the combined dataset even if we

combine datasets from different platforms or species as the

source. It should be noted that the source dataset for model

training should contain a reasonable number of cells per

cell type for reliable cell-type annotation. We recommended

including at least 10 cells per cell type to adequately represent

the transcriptional program as well as variance.

Unlike the cross-dataset mapping approaches, classifiers

based on cell-type marker genes such as Garnett [35] and

CellAssign [37] can also overcome the batch effect issues. We

compared scAdapt with these two classifiers on the human

PBMC dataset which has comprehensive resource of marker

genes for various cell types. We used the marker genes from

three sources: the original author, CellMarker database [38] and

top 10 differentially expressed markers of the respective cell

types in the training data. From Figure S16, see Supplementary

Data available online at http://bib.oxfordjournals.org/, we found

that the selection of marker genes has large impact on the

performance of Garnett (accuracy: 0.53–0.71) and CellAssign

(accuracy: 0.51–0.62). CellAssign shows lower performance

compared with other classifiers and Garnett only surpasses

the accuracy of CHETAH and scPred. These results are in line

with the previous benchmark conclusions that marker gene

knowledge is not beneficial and the performance strongly

depends on the selected markers [3, 14].

For constructing large reference datasets and pretrained

models, we also test scAdapt in a pretrain-finetune manner.

Specifically, we first pretrain the model only with the cross-

entropy loss on the labeled source data, and then fine-tune the

model with VAT loss on the unlabeled target data. This manner

does not require rerunning the full training pipeline on source

data and thus save computational resources. We found that

our fine-tuned models only experience a slight accuracy loss

on the cross-platform (2%), cross-species (1%) and Covid-19 (2%)

datasets.These results validate the effectiveness of the proposed

pretrain-finetune approach. We have uploaded the pretrained

classifiers to GitHub for further use.

As for guideline to use scAdapt,we first need to choose awell-

annotated reference dataset which contains similar cell types

with the query data. Cell atlases, such as the Human Cell Atlas

[39] with comprehensive tissue and cell-type information, are

excellent for building reference. Once such standard references

are constructed, scAdapt can be used to characterize cells from

different tissues, diseases and states. Another typical scenario

to use scAdapt is that users can share their reference data as

pretrained network without any sharing of private data, such

as human data due to legal restrictions. This makes the learned

models easily transferable, shareable and reproducible.

It is important to note that the semi-supervised classification

module of scAdapt can deal with different degrees of batch

effects and does not need to perform batch correction explicitly.

During the training process, the classification module is trained

in the first step and then the batch correction module is trained

with the pseudo labels produced by the classification module.

If only performing classification task, users can close the batch

effect removal step by zeroing out the regularization coefficients

of batch correction module in the loss function.

While scAdapt performed the best in the experiments, there

is still room for improvement. scAdapt needs source cell labels

for supervised batch correction. For the scenario without source

data label information, we can perform a preliminary cluster-

ing in the source data and use the inferred cluster labels as

input labels for scAdapt training. Integrating the preclustering

step and scAdapt into a unified deep learning framework may

accommodate such unlabeled scenario more effectively, which

will be left for our future work. Another future direction is

to enhance the classifier by distinguishing similar subtypes at

deeper annotation level since the subtle biological difference

between subtypes is often masked by noise from experimental

batches and sequencing platforms, and hard to be recognized.

This problem might be solved by the recently developed fine-

grained image classification that can learn a more discrimina-

tive feature representation [40].
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Key Points

• With the rapid accumulation of labeled single cell

datasets, such as Human Cell Atlas, many supervised

approaches have been developed to identify cell types

for cells in the new unannotated data. However, exist-

ing approaches are sensitive to batch effects or biologi-

cal variations since the data distributions are different

in cross-platforms or species predictions.
• To address this critical issue, we developed scAdapt,

a virtual adversarial domain adaptation network,

to transfer cell labels between datasets with batch

effects. scAdapt used both the labeled source and

unlabeled target data to train an enhanced classifier

and aligned the labeled source centroids and pseudo-

labeled target centroids to generate a batch-corrected

embedding.
• Our scAdapt method shows clear advantages over

seven state-of-the-art single cell classification meth-

ods and four batch effect correction methods in sim-

ulated, cross-platforms, cross-species, spatial tran-

scriptomic and COVID-19 immune datasets. Visual-

izations for the batch-corrected embeddings confirm

the superiority of scAdapt in mixing cells of the same

cell type across batches and the ability to preserve

discriminative cluster structure present in the original

datasets.

Supplementary data

Supplementary data are available online at https://academic.

oup.com/bib.

Data and software availability

The datasets and code for scAdapt are publicly available at

GitHub: https://github.com/biomed-ai/scAdapt.
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