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ABSTRACT: The goal of molecular optimization (MO) is to discover
molecules that acquire improved pharmaceutical properties over a known
starting molecule. Despite many recent successes of new approaches for MO,
these methods were typically developed for particular properties with rich
annotated training examples. Thus, these approaches are difficult to
implement in real scenes where only a small amount of pharmaceutical
data is usually available due to the expense and significant effort required for
the data collection. Here, we propose a new approach, Meta-MO, for
molecular optimization with a handful of training samples based on the well-
recognized first-order meta-learning algorithms. By using a set of meta tasks with rich training samples, Meta-MO trains a meta
model through the meta-learning optimization and adapts the learned model to new low-resource MO tasks. Meta-MO was shown
to consistently outperform several pretraining and multitask training procedures, providing an average improvement in the success
rate of 4.3% on a large-scale bioactivity data set with diverse target variations. We also observed that Meta-MO resulted in the best
performing models across fine-tuning sets with only dozens of samples. To the best of our knowledge, this is the first study to apply
meta learning to MO tasks. More importantly, such a strategy could be further extended to many low-resource scenarios in real-
world drug design.

■ INTRODUCTION

Designing molecules with desirable functionalities lies at the
core of the drug discovery process. However, it is practically
impossible to discover a new drug through brute-force
exploration of the chemical space that contains more than
1023 to 1026 druglike molecules.1 A common strategy of
rational molecular design is to narrow down the searching
space by starting from a known molecule with potential. Thus,
the molecular design turns to optimize a candidate molecule by
finding novel molecules with improved pharmaceutical
activities and reduced side effects to patients, i.e., the molecule
optimization (MO).2 Yet, it remains challenging to form
satisfactory optimization for hit compounds since there is
usually only a small amount of pharmaceutical data for the
source and target molecules.3

Conventional computational approaches utilized hand-
crafted rules such as matched molecular pair analysis
(MMPA)4 or reaction-based fragment growth5,6 that often
generate compounds with limited novelty and diversity. In
addition, these methods often require a substantial amount of
data engineering work. With the development of deep learning
techniques, various neural approaches7−10 have been proposed
to design novel, natural, and diverse molecules with desired
properties through reinforcement learning or Bayesian
Optimization (BO). However, these de novo design methods
tend to generate molecules from scratch, taking no account of
source molecules and synthetic feasibility, and hence are
usually impractical in the context of MO tasks.

Recently, several studies11,12 attempted to use a supervised
learning paradigm for the transformation of source and target
compounds with desired properties, where MO was reformu-
lated into a graph-to-graph translation problem. The original
idea is to translate the source compound into the target
compound with prespecified desired properties.13 To train
these graph-based methods, they have simulated tens of
thousands of molecules (data points) through expert-defined
scoring functions from deterministic and rigid rules like
calculated logP or druglike index (QED) that can be calculated
directly from the compound structure. However, under the
large number of training points, these well predefined scoring
functions could be well fit even through a basic seq-to-seq
model14 and cannot represent the challenge in real scenes of
MO where the scoring function needs to train on only a few
potential compounds (points) for a new target protein.
Therefore, it is necessary to develop a new MO framework
that could be trained from a small number of data points.
The problem of modeling a small number of training points

has been addressed fiercely by the few-shot learning
community. A remarkable solution is the meta-learning
paradigm to obtain a meta model that is efficient at adapting
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to new tasks.15−17 Under this paradigm, Vinyals et al. proposed
the Matching Networks18 as the first pioneering approach
using metric learning and augmented neural networks to learn
a meta model that could be rapidly adapted to limited data.
Another related approach is the Model Agnostic Meta-
Learning (MAML) algorithm,19 which has been particularly
successful at producing state-of-the-art results on few-shot
representation learning benchmarks. The key idea of MAML is
to learn good initialization parameters from a set of resource-
rich tasks for easy fine-tuning on low-resource scenarios.
Particularly, MAML is able to be applied to a wide range of
areas because it is model-agnostic and thus introduces no extra
neural architectures or parameters. However, MAML needs to
calculate second-order derivatives through the optimization
process and is computationally expensive when performing a
large number of gradient steps. To address this shortcoming,
Nichol et al.20 proposed a quasi MAML framework, Reptile, by
computing only first-order gradients through the optimization
process, making it more suitable for optimization problems.
Though these meta-learning techniques have recently been
shown superior in many fields21 including low-resource
molecular property predictions,3,22 no effort has been given
to the task of MO due to the inherent complexity of the
generation task.
In this work, we adopted the standard meta-learning

paradigm to the MO problem through the Reptile technique.
By viewing bioactivity data points in different protein targets as
separate MO tasks, our method Meta-MO learns a meta-model
from a series of resource-rich targets that are able to generalize
for other protein targets. Such a meta-model allows for the
optimization of candidate molecules for low-resource protein
targets (e.g., with only tens of known actives).
The main contribution of this paper is 2-fold:

• We proposed a meta-learning algorithm Meta-MO based
on Reptile for low-resource MO tasks. Since Meta-MO
is model-agnostic, it is applicable to many other MO
models. To the best of our knowledge, this is the first
study of applying meta learning to MO tasks.

• We constructed a real-world bioactive MO data set and
utilized the data set for extensive evaluations with
various settings. As a result, Meta-MO was shown to
significantly outperform other methods in multiple
configurations. Further analyses indicated that the
superior performance of Meta-MO resulted from much
faster and better adaption to new tasks.

■ METHODS
Data Preprocessing. To assess our molecule optimization

(MO) method, we constructed sets of MO pairs from a subset
of ChEMBL2023 using a custom-made scoring function for
training and large-scale evaluations. More specifically, we first
selected kinase-related targets with 300−5000 unique bio-
activity instances. After filtering out the SMILES strings
containing disconnected ions or fragments, molecule com-
pounds were then preprocessed using RDKit24 for salt and
isotopes removal, as well as charge neutralization. The final
data set contained 103 511 bioactivity compounds across 152
kinases. Note that we used pChEMBL values as the standard
activity unit defined as −Log(molar EC50, XC50, IC50, AC50,
Ki, Kd, or Potency).
To mimic the MO scenario, we constructed our data set

following the idea of the matched molecular pair (MMP)

cutting algorithm proposed by Hussain et al.4 In particular, we
constructed data sets by sampling target-based molecular pairs
((X; Y)|Z) where the source molecule X and target molecule Y
need to be similar in 2D (2Dsim(X; Y) ⩾ 0.4), and Y has
significant bioactivity improvement over X (pChEMBL ≥ 1) in
the context of protein kinase Z. Here, the 2D molecular
similarity was measured by the Tanimoto coefficient over the
Morgan fingerprints.25 The source molecules were restricted to
those with low bioactivity (pChEMBL ≤ 6). To avoid
potential bias, the bioactive molecules for each protein kinase
were randomly split into training, validation, and test by 6:2:2,
and the molecules for training were then paired under the
similarity and bioactivity improvement constraints to construct
the final training molecule pairs set. During the pairing, each
molecule was limited to act as a source molecule or a target
molecule for at most five times to avoid possible biases caused
by frequently appearing molecules. One protein kinase was
considered as a task. After removing tasks containing less than
300 training molecular pairs, 64 tasks remained for the
experiments.
These 64 tasks were further divided into 57:1:6 for the

training, validation, and test task subsets ( train, val, and test

), respectively. The 57 training tasks in train are defined as
support tasks for meta training, containing around 33K
molecular pairs. The rest of the seven tasks from val and

test contain at least 1000 molecule pairs to ensure that deep
QSAR models could be generated to qualify generated
molecules. Table 1 shows the data set split of test and val

tasks (see the Supporting Information for train). Figures S1−
S4 show the distributions of molecule weight, synthetic
accessibility score, logP, and property of test tasks.

Meta-MO. Meta-MO was designed for a specific MO task
having a small number of training samples but having many
relevant tasks totally with a substantial number of samples.
Here, we first employed the tasks in train to train a meta-
model and then used the trained meta-model to learn an
effective agent for the target task test . Generally, we aimed to

Table 1. Target Names and the Numbers of Compounds or
Compound Pairs in the Training, Validation, and Test Sets
for Seven Tasks from the val and test Task Subsetsa

CHEMBL ID target name code train validation test

CHEMBL262 glycogen synthase
kinase-3 beta

GSK-3B 1130 210 210

CHEMBL267 tyrosine-protein
kinase SRC

SRC 1756 250 250

CHEMBL3267 PI3-kinase p110-
gamma subunit

P110γ 1078 136 136

CHEMBL3650 fibroblast growth
factor receptor 1

FGFR1 1280 164 164

CHEMBL4005 PI3-kinase p110-
alpha subunit

P110α 2156 222 223

CHEMBL4282 serine/threonine-
protein kinase
AKT

AKT 1364 161 161

CHEMBL4722 serine/threonine-
protein kinase
Aurora-A

AURKA 1060 146 147

aSerine/threonine-protein kinase Aurora-A (CHEMBL4722) is
selected as the val task.
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harness the information available in the training tasks to create
robust generators for the test system.
In the following section, we will briefly introduce the

fundamentals of MAML and Reptile to help readers under-
stand the framework. For more details, refer to the original
literature.19,20

Meta Learning. Optimization-based meta learning aims at
training a meta-model based on one set of similar tasks train

such that the meta-model can quickly adapt to a new task with
limited training samples or iterations. To accomplish this,
MAML proposed to sample gradient-based learning rules from
the distribution of tasks and fine-tune the rules on new tasks.19

Despite the inspiring performance reported, MAML requires
second-order derivatives through the optimization process,
which is computationally expensive when performing a large
number of gradient steps. In this study, Reptile, one of the first-
order approximation algorithms of MAML that can provide
both conveniences in implementation and efficiency in
computation, was adopted as the meta-learning algorithm for
our Meta-MO framework.

As shown in Algorithm 1, the meta-model was initialized by
random model parameters θ. In each iteration, a task τ was
randomly selected from train as the support task, and the
model was inner-updated through k steps of Adam
optimization. Based on the final parameters θτ, the meta-
model was outer-updated by partially moving toward θτ with ϵ
as the learning rate for the outer update. These continue until
the preset number of iterations, and the best meta-model was
selected based on the validation task set val.
Figure 1 displays the overall architecture of the Reptile meta-

learning framework for molecular optimization. Each support
task i N, 0, ..., 1i

train ∈ − indexes the source molecules
train-X and the corresponding target molecules train-Y. During

the meta training stage, parameters are inner-updated based on
the sampled task at each iteration (line 4 in Algorithm 1) and
then outer-updated as the initialized parameters for the next
iteration (line 5 in Algorithm 1). During the meta testing on a
query task test , the learned meta-model is fine-tuned through
the training pair set among the task. The fine-tuned model is
selected and then evaluated through the validation and test pair
sets in the query task, respectively.

Neural Networks for Molecular Optimization.
Although the meta learning is assumed to be model-
independent and insensitive to the selected model, an efficient
and effective basic MO model is required to aid the verification
during training and testing. Previous graph-based MO models
are criticized for fragile training processes and limited chemical
diversity. For this reason, we adopted a graph enhanced
Transformer (GET) for generating optimized molecules with
the input of a source molecule.26−29

As shown in Figure 2, GET comprises two main
components: a graph neural network (GNN) for molecular
graph embedding and a Transformer neural network for
mapping the molecular pairs.
For a given source molecule, we first represent it as an

attributed molecular graph G = (V, E), where V = {v1,...,vn}
denotes a set of nodes (atoms), and E = [eij]i,j=1

n represents
edges (bonds) between atoms i and j. Each atom vi is
represented by a d-dimensional initial feature vector hi
containing the 2D chemical features, and each bond is
represented by an f-dimension vector eij, encoding the bond
types including single, double, triple, and aromatic types (see
more details in Table S1). The graph encoder generates new
representations Ĥs = {h1′,...,hN′ } for atoms of the source
molecule through multilayer message passing networks.
Then, we concatenate the learned graph representations Ĥs

with SMILES sequence embeddingMs = (s1,···, sm) and convert
them through a simple linear transformation. The combined
multimodal molecular representations are sent to the Trans-
former encoder to convert into a latent representation
L m f∈ × , where m is the sequence length of molecular
SMILES, and f is the hidden state dimension. Given L, the
decoder iteratively generates an output SMILES sequence Y =
(y1,...,yo) until the ending token “⟨/s⟩” is generated.
The Transformer neural networks contain multiple encoder-

decoder modules. Each encoder layer consists of a multihead

Figure 1. Framework of Reptile meta learning for molecular optimization. The left part aims to train a meta-model by sampling tasks from training
tasks (detailed in Algorithm 1). The trained meta-model will be fine-tuned and tested on target tasks (the right part).
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self-attention sublayer and a position-wise feed-forward
network (FFN) sublayer. Multihead attention has several
scaled dot-product attention functions working in parallel,
which allows the model to focus on messages from different
subspaces at different positions. More formula derivations of
the graph neural network and Transformer neural network
have been demonstrated in the Supporting Information.
During training, the model minimizes the cross-entropy loss

between the target sequence Mt = (t1,...,tk) and the output
sequence Y.

Y M y t( , ) log
i

k

i i
1

∑= −
=

Additionally, to assess our method, we also employed two
popular molecular transformation methods for comparison
since there are many successful examples to combine meta
learning with LSTM or GCN techniques.21

1. LSTM-Attention. The seq2seq LSTM-Attention model
consists of a bidirectional LSTM encoder and an LSTM
decoder,14 with an attention mechanism adopted to
generate target molecules within the context information
of source molecules.

2. Graph2graph (G2G). G2G11 is a Graph-to-Graph
model that extends the junction variational autoencoder
(VAE) via an attention mechanism and generative
adversarial networks (GAN). The model is capable of
translating the current molecule to a similar molecule
with a predefined desired property (e.g., logP).

Baseline Training Strategies. We included different
learning strategies as baselines:

a) No pretraining. We remove the pretraining procedure
as the “no pretraining” baseline, where model fθ is
randomly initialized and learned only through the
training data from each test task. The model is used

to indicate how much the below models can benefit
from the pretraining procedures.

b) Multi-MO. Multi-MO follows a multitask pretraining
paradigm. We train fθ using multitask learning (MTL)
with train tasks data and then fine-tune it based on the
training data in the test task. It is the major baseline to
compare with and to prove the effectiveness of task
adaption ability of meta learning.

c) Multi-MO-Zero-Shot. Multi-MO-zero-shot corresponds
to a zero-shot learning scenario. We train fθ using
multitask learning (MTL) with train tasks data and
directly test the model on test tasks without fine-tuning
steps.

d) Meta-MO-Zero-Shot. Meta-MO-zero-shot corresponds
to a zero-shot learning scenario as Multi-MO-zero-shot
does. We train fθ using meta learning instead of MTL
with train tasks data and test the model on test tasks
without fine-tuning steps. Compared with Multi-MO-
zero-shot, the results directly indicate how well the
learned meta model can perform on a new test task.

Evaluation Metrics.We adopted the following five metrics
for evaluation partly following Jin et al.:11

• Similarity. The similarity (range 0−1) between an input
molecule and the output molecule is calculated by
Tanimoto similarity over Morgan fingerprints.25

• Success Rate (SR). The success rate is the core metric
as the percentage of successfully optimized molecules
out of all designed molecules in the test set. A design
was considered to be successful if the output molecule Y
has a 2D similarity ≥ 0.4 to input molecule X and
bioact ivity improvement (pBioact ivity(Y) −
pBioactivity(X) ≥ 1.0). Note that the bioactivities of
generated compounds are predicted by QSAR models

Figure 2. Overall architecture of a graph enhanced Transformer.
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(see below) as we do not have experimentally measured
bioactivity for generated molecules.

• Uniqueness. Uniqueness calculates the percentage of
distinct molecules out of all generated molecules. A
higher uniqueness score means that the model tends to
generate molecules beyond the target molecules in the
training data.

• Diversity. Diversity is defined as the average difference
between the source molecule and the generated valid
candidate target molecules. The difference was measured
as 1.0 − Tanimoto coefficient.

• Validity. Validity measures the percentage of valid
SMILES strings out of all generated sequences. A high
validity score ensures the generation of enough valid
molecules during adaption to a new task and thus partly
reflects the task adaption ability of a model.

Experimental Details. QSAR Model. One important factor
required to assess the performance of MO is whether the
generated molecules have improved bioactivity on the desired
targets. To enable rapid and accurate profiling of generated
molecules, virtual profiling models were trained on all
compounds in the test kinase data sets. We evaluated several
state-of-the-art messages passing neural networks30,31 with
molecular graphs as the molecular representations and found
the Communicative Message Passing Network (CMPNN)31

obviously outperformed other models with an average R2 of
0.64 and an RMSE of 0.66 (pChEMBL value) on internal test
sets. Thus, the CMPNN model was used as the virtual profiling
model in the following studies. The modeling details and
results are shown in the Supporting Information. It should be
noted that QSAR was not involved in the training of MO
methods and only used for assessing the final outputs of
different MO methods.
Implementations and Hyperparameters. We implemented

Transformer with the same settings as the original model.26

The input atoms are limited to 13 atoms as listed in Table S1,
and the corresponding input dimension of atoms is 21. The
initial learning rate of Adam is 0.1 for our MO task. For each
source molecule, 10 candidate target molecules are generated
using the beam search.32

To train the meta-model, we randomly sampled tasks from
train for 57 × 50 = 2850 times. For each sampled task, we

trained the inner model for 10 epochs using the training data
from the task. The learned model was used to update the meta-
model through the outer parameter update with a learning rate
of 0.0005. The meta-models were saved as checkpoints every
57 times of task sampling, and the 500 checkpoint models were
separately assessed over val to select the best meta-model.
For the assessment on val, each checkpoint model was

fine-tuned for 50 epochs using the training set and then
validated by the validation set. The model with the highest
success rate during the validation was tested on the test set,
and the tested result was used to measure the checkpoint
model. Finally, the checkpoint model with the best perform-
ance was selected as the meta-model for tested tasks.
For each task test , the selected meta-model was fine-tuned,

validated, and tested on the test task following the same steps
as the assessment on val, and the results on the test set
represent the performance of the test task.
For a fair comparison, Multi-MO was performed with a

similar procedure. Since the pretraining was made on all 57

tasks, we also pretrained the model for 500 epochs costing
approximately the same training time.

■ RESULTS
Model Performance on the Multikinase Data Set. We

have collected three basic models popular for molecular
generation. To select appropriate models for our MO task, we
have implemented these basic models in the multitask MO
scenario to avoid potential bias to the meta-learning method.
As shown in Table 2, the graph enhanced Transformer (GET)

achieved not only the highest success rates and diversity scores
but also the most important metrics for the MO task. By
comparison, G2G has higher similarity and validity scores
because the graph-based model is able to generate similar
junction tree structures over source molecules, and the
generated molecule graph is always a valid molecule leading
to a validity score of 100%. However, it achieved significantly
lower uniqueness and diversity due to the limited vocabulary
size, consistent with previous findings.33 The LSTM-Attention
model achieved consistently worse results than the GET model
except for the uniqueness score. Therefore, we chose GET as
the backbone model for further experiments.

Performance Comparisons with Different Training
Strategies. Based on the GET backbone model, we compared
the effects of different model parameters or pretraining
strategies through three different experiments. As shown in
Table 3, without fine-tuning on the test tasks, Meta-MO-zero-
shot outperformed Multi-MO-zero-shot in five out of six test
tasks and improved the average success rate by 2.46%.
Interestingly, these two methods even achieved higher success
rates on glycogen synthase kinase-3 beta than the “no
pretraining” model that was directly trained on the test task.
After fine-tuning on the test tasks, Meta-MO and Multi-MO
have significantly improved the success rates with 10−25%
over the “no pretraining” method across six test tasks.
Compared with Multi-MO, Meta-MO could further improve
the success rates with 4.37% on average, indicating that the
meta-learning paradigm provided better generalization ability
than a simple multitask pretraining strategy.
Table 4 detailed the comparisons of Multi-MO and Meta-

MO. Meta-MO consistently outperformed Multi-MO on all
test tasks by success rate, similarity, uniqueness, and validity

metrics, indicating the superiority of the meta-learning setting
in MO scenario.
To further dive into how meta learning learns at the

pretraining stage, we show the learning curves of meta learning
and multitask pretraining for the convergence. Figure 3
displays the success rates on the val task changed with the
pretrained epochs. In the first ∼200 epochs, Meta-MO-zero-
shot achieved lower success rates than Multi-MO-zero-shot,
likely because the 57 training tasks have not been sufficiently
sampled to learn the task distribution for the meta learning.
After 200 epochs, meta learning is able to surpass multitask

Table 2. Multitask Molecular Optimization Performance

model similarity
success
rate uniqueness diversity validity

LSTM-
Attention

0.1487 18.05% 75.35% 0.2001 58.44%

G2G 0.3951 30.67% 23.24% 0.1742 100%
GET 0.2647 39.43% 61.80% 0.2649 64.28%
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Table 3. Performances of Different Learning Strategies by Success Rates (%) on test

target no pretraining Multi-MO-zero-shot Meta-MO-zero-shot Multi-MO Meta-MO

GSK-3B 14.05 ± 3.37 17.02 ± 1.56 22.38 ± 2.88 28.81 ± 1.04 37.02 ± 1.40
SRC 24.20 ± 6.96 10.70 ± 1.58 15.00 ± 2.01 44.20 ± 1.18 49.50 ± 0.52
P110γ 16.73 ± 7.72 8.09 ± 1.80 11.40 ± 1.33 35.48 ± 1.68 38.42 ± 1.41
FGFR1 37.04 ± 6.57 15.39 ± 0.79 14.93 ± 1.58 54.12 ± 2.67 58.54 ± 0.75
P110α 50.79 ± 5.45 9.53 ± 0.73 10.65 ± 0.86 66.03 ± 1.50 70.29 ± 1.11
AKT 31.37 ± 2.96 4.51 ± 1.77 5.59 ± 0.76 41.46 ± 1.11 42.55 ± 0.70
average 29.03 ± 5.51 10.87 ± 1.37 13.33 ± 1.57 45.02 ± 1.53 49.39 ± 0.98

Table 4. Detailed Comparison of Multi-MO and Meta-MO on testa

metric method GSK-3B SRC P110γ FGFR1 P110α AKT av

success rate (%) Multi 28.81 44.20 35.48 54.12 66.03 41.46 45.02
Meta 37.02 49.50 38.42 58.54 70.29 42.55 49.39

similarity Multi 0.21 0.27 0.30 0.33 0.35 0.27 0.29
Meta 0.30 0.35 0.39 0.40 0.43 0.35 0.37

uniqueness (%) Multi 78.07 65.71 57.92 60.47 57.79 70.09 65.01
Meta 82.88 66.79 60.55 63.06 59.71 74.94 67.99

diversity Multi 0.27 0.27 0.29 0.30 0.31 0.32 0.29
Meta 0.28 0.28 0.29 0.32 0.33 0.36 0.31

validity (%) Multi 60.61 62.80 68.42 72.06 75.43 65.08 67.40
Meta 81.95 80.46 86.25 87.04 91.01 83.14 84.98

aThe standard deviations are displayed in the Supporting Information.

Figure 3. Comparison of learning curves by different strategies on the val task.

Figure 4. Success rates of two different pretraining strategies with different ratios of training data on test tasks.
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pretraining and quickly arrives at a stable performance. By fine-
tuning over the query task, there is a similar trend that Meta-
MO achieved a lower performance in the early stage, but the
surpassing over Multi-MO is earlier at ∼100 epochs. These
phenomena explain the design of Reptile to iteratively sample
training tasks, for such procedures can help the model to learn
the distribution of training tasks so that new tasks can be
rapidly and well adapted.
Effect of Fine-Tuning Set Size and Meta Test Training

Epochs. In the above evaluation, all the testing sets have

sufficient samples (>1000 training pairs, as demonstrated in
the Data Preprocessing section). To verify the impact of the
training data size, we first reduced the number of training

samples on test to 20%, 40%, 60%, and 80%, respectively. As
shown in Figure 4, the success rates generally increase with
more training data, while the meta-learning setting achieves
better success rates, especially with limited data (e.g., compare
bars of 20% and 100% data ratio for tasks SRC, P110γ, FGFR1,
P110α, and AKT).

Figure 5. Success rates of two different pretraining strategies after fine-tuning with a different number of training samples ranging from 16 to 256
for test tasks.

Figure 6. Success rates of two different pretraining strategies with different training epochs on test tasks.
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Figure 5 further displays more challenging experiments with
a small number of training samples for each task, ranging from
16 to 256 instances. The results show that meta learning still
outperforms multitask pretraining in such an extremely low-
resource scenario. We also observed that multi-MO, different
from the stable increase by Meta-MO, shows a small increase
or drop in small data (16−64) for tasks GSK-3B, SRC, and
P110γ. This is likely because Meta-MO has learned a common
mode easier for adapting to new tasks. In terms of fine-tuning
speed, Meta-MO also shows better results under limited
training epochs, as Figure 6 displays. It can be seen as a hint

that a meta-learning strategy not only learns better but also
faster for task adaptions.

Case Study. To illustrate our methods, we employed
glycogen synthase kinase-3 beta (GSK-3B) as an example and
generated 100 target molecules through the Meta-MO and
Multi-MO models that have been fine-tuned with 64 randomly
selected training samples. As shown in Figure 7, Meta-MO has
significantly higher similarity and bioactivity improvements
than Multi-MO, respectively, with P-values of 0.0028 and
0.0002 by the t test. Figure 8 further shows the top 10
generated compounds for a randomly selected source

Figure 7. Distributions of 100 valid molecules generated by Meta-MO and Multi-MO over a randomly selected source molecule. Each black point
represents a valid molecule.

Figure 8. A test source molecule in GSK-3B and the corresponding top 10 target molecules generated by Meta-MO and Multi-MO, respectively.
Both models are fine-tuned with only 64 training samples in GSK-3B. Target molecules with bold text descriptions are the molecules satisfying
similarity and property improvement constraints.
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molecule. Basically, both models are able to generate molecules
with required similarity and property improvement. According
to the predefined success standard (similarity ≥ 0.4 and
bioactivity improvement ≥ 1.0), Meta-MO successfully
optimized all molecules with a similarity of 0.43−0.67 and
bioactivity improvements of 1.03−1.62. By comparison, Multi-
MO successfully optimized only four molecules with a
similarity of 0.15−0.67 and bioactivity improvements of
0.21−1.73. On average, molecules generated by Meta-MO
are 48.43% and 42.70% higher than those by Multi-MO in 2D
similarity and bioactivity improvement.

■ DISCUSSION AND CONCLUSION
In this work, we propose a meta-learning algorithm Meta-MO
based on Reptile for low-resource MO tasks. To the best of our
knowledge, this is the first study of applying meta learning to
MO tasks. We extensively evaluate Meta-MO on a large
bioactivity data set with various low-resource protein targets.
Results show that Meta-MO significantly outperforms other
optimization methods in various configurations. We further
analyze the superior performance of Meta-MO and show that
it indeed adapts much faster and better than other models,
including multitask learning.
Our model has several weak points. One major problem is

the ignoring of target protein information. As molecules
interact with the target protein, effective embedding will
reduce the limit of the small amount of training samples. The
protein information could be embedded through sequence,34

contact map,35 or 3D structure.36 Second, experimental costs
limit the discussion about direct comparison of meta learning
on recently proposed MO models, which can be covered in
future work, and the effectiveness of meta learning on many
other directions in low-resource drug discovery is yet to be
discovered.
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