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Abstract 

Protein solubility is significant in producing new soluble proteins that can reduce the cost of biocatalysts or therapeu-
tic agents. Therefore, a computational model is highly desired to accurately predict protein solubility from the amino 
acid sequence. Many methods have been developed, but they are mostly based on the one-dimensional embedding 
of amino acids that is limited to catch spatially structural information. In this study, we have developed a new struc-
ture-aware method GraphSol to predict protein solubility by attentive graph convolutional network (GCN), where the 
protein topology attribute graph was constructed through predicted contact maps only from the sequence. GraphSol 
was shown to substantially outperform other sequence-based methods. The model was proven to be stable by con-
sistent R2 of 0.48 in both the cross-validation and independent test of the eSOL dataset. To our best knowledge, this is 
the first study to utilize the GCN for sequence-based protein solubility predictions. More importantly, this architecture 
could be easily extended to other protein prediction tasks requiring a raw protein sequence.
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Introduction
Over the past 20 years, recombinant protein had played a 
vital role in biotechnology and medicine, including novel 
therapeutic protein drugs and antibodies [1]. Recombi-
nant proteins are mostly produced by genetic engineer-
ing in Escherichia coli (E.coli) [2]. However, low solubility 
and activity of proteins expressed by E.coli limited the 
production efficiency even though the standard workflow 
and logical strategies have been widely deployed in biop-
harmaceutical industries [1]. According to statistics, over 
30% of recombinant proteins are not soluble [3], 33–35% 
of all expressed non-membrane proteins are insoluble, 
and 25–57% of soluble proteins are prone to aggregate 
at higher concentrations [4]. Moreover, the heterologous 

expression often suffers from low levels of production 
and insoluble recombinant proteins forming inclusion 
bodies. Therefore, the protein solubility plays an impor-
tant role in the production of proteins for the biotechno-
logical and pharmaceutical industries.

To enhance the performance of recombinant proteins, 
many experimental technologies have been developed, 
e.g. directed evolution, immobilization, designing bet-
ter promoters, optimizing codon usage, and changing 
culture conditions including media and temperature [5, 
6]. However, such empirical optimizations are labor-
intensive and time-consuming. A precise computational 
model is highly desired so that protein solubility can be 
effectively predicted. Theoretically, given an exact experi-
mental condition (i.e. temperature, expression host, etc.), 
the solubility is determined mainly by its primary struc-
ture that is decided by the sequence [3]. To this end, two 
types of computational approaches have been proposed 
to predict the protein solubility: physical-based and 
machine/deep learning-based methods.
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In terms of the physical-based techniques, most works 
[7, 8] focused on making use of extensive molecular 
dynamics simulations to evaluate the free energy differ-
ence between aggregation and solution phases. How-
ever, these methods are usually of limited accuracy due 
to difficulties in evaluating the conformational entropy 
and solvent contributions. Furthermore, these atom-level 
methods are sensitive to structural fluctuations and can’t 
process protein flexibility well [9].

For the machine/deep learning techniques, several 
sequence-based methods have been developed for pro-
tein solubility prediction including PROSO II [10], 
CCSOL [5], SOLpro [11], and the scoring card method 
(SCM) [12]. The majority of these methods adopted the 
support vector machine (SVM) [13] as the core discrimi-
native model on biologically relevant handcrafted fea-
tures from protein sequences to discriminate the soluble 
and insoluble proteins. The newly proposed method, 
PaRSnIP [14] was developed by identifying correlations 
of protein solubilities positively with fractions of exposed 
residues while negatively with tri-peptide stretches con-
taining multiple histidines. Protein-Sol [15] employed a 
different combination of feature weights in averaging the 
sequence-based local and global properties.

With the development of deep learning techniques, 
many end-to-end methods have been developed. Deep-
Sol built a convolutional neural network (CNN) [16] to 
construct non-linear high-dimensional vector spaces 
with essential information for predicting protein solubil-
ity [17]. ProGAN generated extra data from a Generative 
Adversarial Networks (GAN) [18] that had been learned 
by the training set to improve the final performance 
[19]. TAPE [20] and SeqVec [21] trained a general model 
from a large protein database and provided a pretrained 
embedding for other protein downstream tasks. How-
ever, these methods are mostly based on Long Short-
term memory (LSTM) [22] or Transformer [23] and 
didn’t utilize spatial information of protein molecules. 
Though our recent studies indicated that the protein 
structure could be well represented and the contacted 
structural information could be implicitly included by the 
residue-pairwise distance matrix through CNN [24, 25], 
the information aggregated from regular Euclidean space 
could not fully interpret the relations between residues in 
contact.

In the past few years, the Graph Neural Network 
(GNN) was raised to represent the protein structure in 
various deep learning-based methods and had made suc-
cesses in properties prediction [26–28]. However, these 
methods demand experimentally obtained 3D structures 
that are hard to acquire for aggregation proteins and thus 
are not appropriated for sequence-based protein solubil-
ity prediction.

With recent developments in protein structure pre-
diction, the prediction of protein contact map has been 
greatly improved according to the critical assessment of 
protein structure prediction (CASP) [29], which brought 
another way to get accurate contact structural informa-
tion without using the protein 3D structures. There are 
quite a few predictors solved this protein by evaluating 
the residue-residue contact [29–31], for example, Hanson 
et al. [32] had developed a novel sequence-based method 
in predicting protein contact map and reached the state-
of-the-art performance, which aimed to capture these 
deep, underlying relationships between residue-residue 
pairs in spatial dimensions for protein ‘image’ at each 
layer. Compared to other algorithms, the predicted pro-
tein contact map integrates all their advantages so that 
it can represent 2D structural features directly in high 
accuracy, enabling the construction of accurate protein 
graphical representations from protein sequence. And a 
similar constructed structure also helps us evaluate the 
predicted performance when compared to the possible 
experimental structure.

Inspired by these new development tools, we proposed 
a novel structure-aware method GraphSol for protein 
solubility prediction from the sequence by combining 
predicted contact maps and graph neural networks. The 
predicted contact maps were employed to construct pro-
tein graphs, and the attentive-based graph convolutional 
network made the predictions through mapping the 
nodes (amino acids) embedding to the graph full con-
tent embedding. We performed our model in the eSOL 
database [33] and obtained state-of-the-art performance. 
To the best of our knowledge, this is the first study to 
make sequence-based solubility prediction for proteins 
through graph neural networks. Moreover, such archi-
tecture could be easily applied to extensive tasks on pro-
teins, e.g. protein function prediction, protein–protein 
interaction prediction, protein folding, and drug design.

Methods
Overview
In this study, we convert the protein solubility predic-
tion task as a graph-based regression problem. Given 
a protein sequence that consists of L amino acids, the 
whole protein could thus be expressed as a topological 
attributed graph G(F ,E) , with F  for the feature set of all 
residues (nodes) and E for the residual contacts (edges) 
according to predicted protein contact map. Our task 
aims to learn a mapping function f (·) that inputs with 
predicted residual features and contact map and out-
puts predicted solubility with continuous scores between 
[0, 1] ∈ R i.e. f : G(F ,E) → [0, 1] . In this work, f (·) is a 
graph convolutional network model that aggerates nodes 
and edges information on the irregular graph.
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Datasets
eSOL dataset
To train our model, we employed the eSOL dataset from 
the previous study [34]. For completeness, we briefly 
describe the procedure to produce the dataset. The whole 
solubility database of ensemble E.coli proteins was down-
loaded from the eSOL website [33], where the solubility 
was defined as the ratio of the supernatant fraction to the 
total fraction in the physiochemical experiments named 
PURE [35]. The 4132 proteins were firstly mapped to the 
NCBI database by gene names, and 3,144 samples were 
returned. We further pruned out all sequences using 
a strict standard that had a sequence identity ≥ 25% or 
E value ≤ 1e− 6 according to previous observation 
[36], and the final data included a total of 2737 protein 
sequences. From the dataset, 75% (2052 proteins) were 
randomly selected as the training set, and the remaining 
25% (685 proteins) were used as the independent test.

S. cerevisiae dataset
For an external independent test, we selected another 
protein dataset collected by [9] from the S. cerevisiae. 
This dataset was derived by including 108 proteins having 
corresponding 3D structures. The solubilities were also 
measured by the cell-free expression called PURE [35] 
in the same external condition to reduce the influence 
caused by the environment.

Protein representation
Node features
We devised four groups of protein features that were 
used to train the GraphSol predictor model.

Blosum62 Instead of one-hot encoding, we have 
encoded residues by Blosum62 [37], which is a widely 
used 20 × 20 matrix for substitutions between 20 standard 
amino acid types according to alignments of homologous 
protein sequences. The blosum62 was shown to outper-
form simple one-hot encoding (results not shown), as also 
indicated in our previous study [38].

Physicochemical properties We utilized a set of 7 phys-
icochemical properties for amino acid types (AAPHY7) 

[39]. These features include steric parameters, hydropho-
bicity, volume, polarizability, isoelectric point, helix prob-
ability, and sheet probability.

Evolutionary information Evolutionarily conserved resi-
dues may contain the motifs related to protein properties 
(such as solubility) in biological sequences [40]. Here, we 
employed the position-specific scoring matrix (PSSM) 
and the Hidden Markov matrix (HMM). To be specific, 
the PSSM profile was produced by PSI-BLAST v2.7.1 [41] 
with the UniRef90 sequence database after 3 iterations. 
The HMM profile was produced by HHblits v3.0.3 in 
aligning the UniClust30 profile HMM database [42] with 
default parameters.

Predicted structural properties Predicted structural 
properties are highly related to solubility in the previous 
study [17]. Herein, we derived the predicted structural 
features from SPIDER3 [43], one of the most accurate 
predictors. The feature group includes 14 features: (1) 
three probability values respectively for three secondary 
structure states (SS3), (2) Relative Solvent-Accessible Sur-
face Area (ASA), (3) eight values for the sine/cosine val-
ues of backbone torsion angles (phi, psi, theta, tau), and 
(4) Half-Sphere Exposures based on the Cα atom (HSE-up 
and HSE-down).

Finally, these feature groups constructed the node fea-
ture matrix X ∈ R

L×94 with L representing the length of 
a protein sequence. Table 1 listed all node feature groups 
with their dimensions. All data were standardized to 
zero mean and unit variance before input into the neural 
network.

Edge features
In order to construct the edges for the protein attribute 
graph representation, we make predictions of the pro-
tein contact map from a sequence by SPOT-Contact [32], 
which outputs the possibilities to form contacts between all 
residue pairs in one protein. In default, the graph is a fully 
connected graph constructed with each edge valued as the 
predicted contact probability of the corresponding resi-
due pair. As the actual number of contacts in a protein is 

Table 1 Node features and dimensions

Group Node features Names Dimensions

1 Blocks substitution matrix BLOSUM62 20

2 Physicochemical properties AAPHY7 7

3 Position-specific scoring matrix PSSM 20

Hidden markov matrix HMM 30

4 Structural properties predicted by SPIDER3 SPIDER3 14
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approximately proportional to the protein sequence length, 
we also test constructing the protein attribute graph by set-
ting up edges for α× L residual pairs with the highest pre-
dicted contact probability, as also used in the CASP [29]. 
The α = 1 ∼ 7 was utilized as suggested by [44]. Herein, 
we tested two schemes to construct each selected edge by 
setting the value as “1” (discrete) and the predicted contact 
probability (continuous), respectively. The 2-hop neigh-
bored residues in a sequence are always connected with 
the value “1”. Notably, though the fully connected graph 
(default mode) was shown to perform the best according 
to our results, the partial edges decrease the computational 
and memory complexity from O(L2) to O(L).

Deep learning framework
Our graph-based model consists of three parts. As shown 
in Fig.  1, the first part is a graph convolution network 
(GCN), which aggregates protein structural information 
from its nodes and edges during iterations. The second part 
is a self-attention pooling layer, which transforms the node 
hidden state with varied sizes to the graph representation 
vector with a fixed size. Finally, this fix-sized vector goes 
through some full connection layers to predict the protein 
solubility.

Graph convolution network
Given a protein sequence with L amino acids, the protein is 
represented by the feature matrix X ∈ R

L×f  for nodes and 
contact matrix A ∈ R

L×L for edges with f  as the dimen-
sion of features for nodes. Our graph convolution network 
takes the following formula [45]:

where 
∼

A= A+ IL is the adjacency matrix by adding the 
edge matrix A determined by the predicted contact map 
and the identity matrix IL for self-loops. 

∼

D∈ R
L×L is a 

diagonal degree matrix with 
∼

Dii =
∑

k

∼

Aik that is used to 

(1)G(l+1) = σ

(

∼

D
−1 ∼

A G(l)W (l)

)

,

normalize 
∼

A to sum up to 1.0 in each row. G(l) ∈ R
L×f  is 

the activation hidden matrix in the lth layers with the ini-
tial state G(0) = X here. W (l) ∈ R

f×f
′

 is a weight matrix of 
layer-specific trainable parameters to map the iteration to 
a lower dimension rich-information space with a size of 
f
′ . σ denotes a nonlinear activation function and we use 

the ReLU(·) function here. After each GCN layer, a nor-
malization layer is added to accelerate the convergence of 
the GCN layers as well as reduce the overfitting problem. 
The final output of these GCN layers are integrated as

where vi is a p dimensional vector token embedding for 
the ith node. As a result, M is a 2D matrix to integrate all 
token embeddings with RL×p.

Self‑attention pooling
Note that the output matrix M is dependent on the protein 
length, which is a variable scale. To obtain a fixed size of 
protein representation, a readout transformation is essen-
tial to eliminate the size variance and sequence permuta-
tion variance [46]. Herein, we employ the self-attention 
mechanism [47], which computes the weight coefficients 
T∈ R

r×L with r for the number of attention groups by:

where MT is the transposition of M ∈ R
L×p.W 1 ∈ R

q×p 
and W 2 ∈ R

r×q are two learned attention matrices with 
the hyper-parameters q and r. The SoftMax function 
standardizes each row of the computed weights, to sum 
up to 1. Intuitively, the r groups of attention coefficients 
assess the associations of each residue with the solubil-
ity from different views. Thus, we extract the overall fea-
tures by multiplying T and M, and average all r groups 
of attention coefficients for the final graph representation 
H ∈ R

1×p by

(2)M = (v1, v2, . . . , vL),

(3)T = SoftMax
(

W 2tanh(W 1M
T )

)

,

Fig. 1 The overall framework of the GraphSol model. The compiled node features (X) and contact maps (A) were utilized to construct the GCN 
networks, which were convoluted by two GCN blocks and layer normalizations for hidden states (M). The hidden states were converted by the 
self-attention layer as a fixed length of the vector (H), which were input to the MLP to make the final prediction
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Multilayer perceptron
The output of self-attention pooling was input to the 
multilayer perceptron (MLP) to predict the solubility S 
by

where W3 ∈ R
1×p is the weight matrix and b ∈ R is the 

bias item. The sigmoid function maps the value to (0, 1) 
for solubility prediction.

Training and evaluation
Hyper‑parameters tuning
Our model for solubility prediction includes multiple 
hyperparameters. We tested crucial hyperparameters 
and the range of values as follows:

GCN layers A higher number of GCN layers means 
the wider and deeper information aggregated from 
the edge and node features. However, excessive layers 
would cause a decrease in final predicted accuracy due 
to vanishing gradients. Therefore, it is crucial to keep a 
balance between the layers and the algorithm complex-
ity. We tested the following settings (1, 2, 3, 4) and found 
2 GCN layers to be the optimal value after tuning on the 
validation sets.

GCN middle dimensions These hyper-parameters con-
trol the channel dimensions in all stacking GCN layers 
including the final GCN layer. They influence the matri-
ces that are transferred into self-attention pooling to 
identify the key soluble fragment of the protein. There-
fore, we should construct a suitable size for matrices in 
liberating the rich-information regions as well as the 
distinguishability of different proteins. As a result, the 
optimal parameters are 64 dimensions for the last layer, 
and 256 for others.

Attention heads The attention heads provide weight 
coefficients to focus on key residues for the solubility 
prediction, and different heads enable the attention of 
multiple regions from different views. We tested the 
number of attention heads from 1 to 10 and found 4 
attention heads provided the best performance and the 
least calculation in the validations.

Besides, the models were trained for different epochs 
using Adam optimizer [48]. Additional file  1: Table  S2 
showed the optimal hyper-parameters by the grid search.

(4)H = 1
r

∑r
k=1 (TM)k

(5)S = Sigmoid
(

W3H
T + b

)

,

Cross‑validation and independent test
We performed the fivefold cross-validation on the train-
ing dataset. That is, proteins in the training dataset were 
separated into five parts (folds). In each round four folds 
were employed to train a model that was evaluated on 
the left one-fold. This process was repeated five times, 
and the performances of five predictions were averaged 
as the validation performance. To reduce fluctuations by 
the random splitting of fivefold, we have split the training 
set with five random seeds and took an average of final 
performances. The validations were used to optimize all 
hyper-parameters. After fine-tuning the optimal hyper-
parameters, a model was trained by all training dataset 
and independently tested on the two independent test 
datasets.

Evaluation indicators
The neural network was trained to minimize the root 
of mean squared error (RMSE), and the coefficient of 
determination ( R2 ) was used to evaluate our models and 
optimize the hyper-parameters. Since many compared 
methods [5, 14, 15, 17] have been developed to classify 
whether a protein is soluble or not, we also separate all 
proteins into two classes by a threshold of 0.5 for the 
predicted and actual solubility. Statistically speaking, 
the definition of solubility mentioned before supports 
us regarded the soluble fraction of proteins as the solu-
ble probabilities from other perspectives. Based on this 
setting, the models were evaluated by the area under the 
Receiver Operating Characteristic (ROC) curve (AUC), 
accuracy, precision, recall, and F1 defined as:

where TP, FP, TN, and FN denote the numbers of true 
positives (soluble proteins), false positives (non-soluble 
protein predicted as soluble), true negatives, and false 
negatives, respectively.

Results
Performances on the fivefold cross‑validation 
and independent test
We investigated the performance of the GraphSol 
model on the eSOL dataset. As shown in Table  2, We 
obtained R2 values of 0.476 ± 0.014 and 0.483 for the 
fivefold cross-validation (CV) and independent test, 
respectively. When separating the dataset into two 

(6)Precision = TP/(TP + FP)

(7)Recall = Tp/(TP + FN )

(8)
F1 = 2× (Precision× Recall)/(Precision+ Recall)
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discrete states (soluble or not soluble) by a cutoff of 
0.5, the Area Under Curve (AUC) values are 0.855 and 
0.866 for the fivefold CV and independent test, respec-
tively (Additional file 1: Figure S1). The similar results 
by the CV and independent test indicated the robust-
ness of the GraphSol model.

In order to indicate the importance of feature groups, 
we assessed the performances by 3 ways in the abla-
tion study. As shown in Table  2, when the individual 
feature group was used as the node features, the HMM 
feature yielded the highest R2 with a value of 0.341 in 
the independent test. The other evolution-based fea-
ture (PSSM) performed similarly but slightly worse 
than HMM. Not surprisingly, the BLOSUM feature 
didn’t perform well with R2 of 0.317, but better than the 
AAPHY7. The predicted structural feature group (SPI-
DER3) made the worst performance with R2 of 0.243. 
When removing an individual group, on the contrary, 
the removal of SPIDER3 led to the greatest drop from 
0.483 to 0.449. This is likely because SPIDER3 uniquely 
provided structural information, while other fea-
tures have supplementary alternatives. Though PSSM 
and HMM similarly represent evolution information, 
their removals still caused decreases in performances 
and generally, HMM is shown more important. The 
removal of AAPHY7 caused the smallest drop, which is 
understandable because this feature is a seven-dimen-
sional matrix that is smaller than other feature groups. 
When we evaluated the model by adding the feature 
groups recursively, the model showed incremental 
performances with the addition of each feature group. 
An interesting fact was that the performance sharply 
increased from 0.317 to 0.409 after adding SPIDER3 
features, which agreed with the relationship between 
solubility and structural features such as the secondary 
structure and solvent accessible area.

Evaluating the impact of predicted protein contact map
The previous results were based on a fully connected 
graph with edges weighted according to predicted con-
tact probabilities. As there are a limited number of actual 
contacts between residue pairs, we tested assigning edges 
between top α× L residue pairs with the highest pre-
dicted contacting probabilities. As shown in Fig. 2, when 
not using the predicted contact map ( α = 0 ), i.e. no edges 
were assigned except between 2-hops neighbored resi-
dues, the model achieved R2 of 0.462. With the increase 
of α , the R2 has a steady increase followed by a sharp 
increase from 2× L to 3× L with the R2 of 0.474. Then 
a slight but continuous growth was observed with an 
increase of α . The highest R2 of 0.483 was obtained when 
all residues were connected with the respective predicted 
probability.

By comparison, we tested the connectivity by discretely 
assigning all connected edges as 1 with other pairs not 
connected and labeled to 0. As expected, the R2 increased 
with α from 0 to 3, indicating that the pairs are helpful 
for the prediction. Afterward, the R2 started to decrease 

Table 2 The R2 between the actual solubility scores and those predicted by GraphSol based on individual feature groups, 
removing each feature group from  the  final GraphSol model, and  recursively adding feature groups according to  their 
importance, respectively

Italic values indicate the performance of using all feature groups in our model
a  Performances based on individual feature groups
b  by removing each feature group from all feature
c  by adding feature groups recursively
d  Performances by the fivefold cross-validation

Feature  groupsa CVd Ind. test Feature  groupsb CVd Ind. test Features  groupsc CVd Ind. test

– – – GraphSol 0.476 ± 0.014 0.483 – – –

BLOSUM 0.329 ± 0.016 0.317 − BLOSUM 0.460 ± 0.011 0.465 BLOSUM 0.329 ± 0.016 0.317

AAPHY7 0.293 ± 0.014 0.289 − AAPHY7 0.465 ± 0.012 0.479 + SPIDER3 0.413 ± 0.012 0.409

PSSM 0.333 ± 0.012 0.332 − PSSM 0.457 ± 0.017 0.467 + PSSM 0.456 ± 0.011 0.453

HMM 0.337 ± 0.015 0.341 − HMM 0.455 ± 0.016 0.458 + HMM 0.465 ± 0.012 0.479

SPIDER3 0.231 ± 0.019 0.227 − SPIDER3 0.428 ± 0.018 0.449 + AAPHY7 0.476 ± 0.014 0.483

Fig. 2 The R2 of the GraphSol model changed by selecting the 
different number of contacts (edges) according to predicted contact 
maps
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likely due to the increase of inaccurately predicted con-
tact pairs information. Interestingly, we found there are 
close R2 for the discrete group and continuous group at α 
nearly to 4, which indicates that they may promote equiv-
alent information for the final prediction.

Comparisons with other methods
Our GraphSol model was compared with state-of-the-
art methods. To avoid the impacts caused by data, all 
machine learning or deep learning-based models were 
retrained and tested on the same train and test dataset, 
respectively. As shown in Table 2, GraphSol consistently 
obtained the best results by all measurements as a single 
method with R2 = 0.483 . Even if we didn’t use predicted 
contact maps i.e. no edges were assigned except between 
2-hops neighbored residues, the GraphSol (no-contact) 
ranked the 2nd that yielded slightly higher R2 than our 
self-implemented LSTM model (0.462 vs 0.458). This 
similar result was expected since GraphSol (no-contact) 
utilized the neighbor residue’s information explicitly and 
the LSTM model obtained the same information implic-
itly. And SPIDER3 played a key role in providing accurate 
structural information (0.458 vs 0.449), we inferred this 
improvement may come from the message in the atom-
level rather than the contact in the edge-level. For other 
methods, TAPE [20] and SeqVec [21], two transfer-learn-
ing methods, achieved the highest R2 = 0.461 and the 
second-highest R2 = 0.458 , which lower than GraphSol 
( R2 = 0.483 ) but higher than other non-transfer-learning 
methods. ProGAN [19], a GAN network-based method, 
achieved R2 = 0.442 , which is 4% lower than TAPE and 
GraphSol(no-contact). DeepSol, a CNN-based network, 
achieved R2 of 0.434, which is close to the ProGAN. Other 
Machine learning techniques didn’t perform well with R2 
ranging from 0.214 to 0.411. Figure  3 shows the actual 
solubility as a function of predicted values by four meth-
ods. We found that the deep learning-based methods 

fitted more accuracy in the region [0.2,0.4], especially the 
ProGAN and GraphSol model, and our model performed 
better in the region of 0.2.

As most of the other methods were designed for pre-
dicting discrete states, we also turn the problem into the 
2-state classification task. When using a threshold of 0.5 
to define soluble proteins or not, the GraphSol model 
achieved the best performances with an AUC of 0.866, 
F-measure of 0.732, and accuracy of 0.779, which are at 
least 2% better than the best of other methods. Figure 4 
compared the ROC curves for six methods, and we can 
find that the curve of GraphSol mostly locates on the top. 
We also tested how accuracy varies as a function of the 
threshold which defined a soluble class and the trends 
were similar (Additional file 1: Figures S2, S3).

Fig. 3 Comparison between actual solubility scores and those predicted by four sequence-based methods on the independent test. The line is the 
linear least-square fitting to the actual values with the shadow as the 95% confidence intervals for the regressions

Fig. 4 Comparisons of the areas under the receiver operating curve 
(AUC) on the eSOL test set
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We noticed that GraphSol showed fluctuations in the 
fivefold cross-validation, and thus we built an ensemble 
model by averaging the outputs of 5 trained models dur-
ing CV on the test set. The GraphSol (Ensemble) model 
was found to further improve the performance by a mar-
gin of 3% to 0.501 in R2 . Other indicators also got varied 
increases (Table 3).

Moreover, we made comparisons of all methods on the 
other external S. cerevisiae test set. Here, we employed 
the eSOL training dataset to train the model, and have 
excluded sequences with identity > 25% to the S. cerevi-
siae test dataset. As shown in Table  4, GraphSol model 
yielded R2 of 0.358 which is much higher than other 
sequence-based methods. In comparison, the DeepSol 
and ProGAN achieved an R2 below 0.1. And our ensemble 
method could further improve GraphSol by 3.9%, con-
sistent with the previous results on the eSOL dataset. It 
is noted that all methods achieved lower R2 on this data-
set. This is likely because this dataset is more challenging 
with low homology, as the Solart method was reported to 
yield R2 of 0.422 even with the use of experimental struc-
tures. This method wasn’t directly compared because 
most proteins didn’t contain experimental structures 
as also indicated in the eSOL dataset. We also consider 
the quality of the predicted contact map with the best 
discrete state 3× L and Cα distance less than 7.5 Å. As a 
result, the average values of recall and precision are 0.699 
and 0.439, respectively. The poor quality of the predicted 
contact map may lead to the lower R2.

Case study
To further illustrate our method, we took the Peptidyl-
lysine N-acetyltransferase yjaB gene (PDB id: 2kcw) 

that consisted of 147 residues as an example, which 
showed the lowest RMSE during the independent test. 
We calculated the Cα distance between all residue pairs 
as the actual contact map. As shown in Fig. 5, there are 
360 residue pairs with Cα distance less than 7.5  Å on 
the actual contact map of the protein. The prediction 
corresponded to a precision of 0.745 to cover 75.3% of 
actual contacts (Additional file 1: Table S4). This high-
quality prediction of the residue pairs enabled the accu-
rate construction of the protein attitude graph and the 
solubility prediction. Besides, when compared to the 
actual solubility of 0.87, the GraphSol model made an 
accurate prediction of 0.864 and 0.857 by using the 
continuous and 3× L discrete predicted contact map, 
respectively. This similar tendency between Fig.  2 and 
Additional file 1: Figure S4 also indicated the effective-
ness of our method.

Table 3 Comparisons of different methods on the eSOL test dataset

Italic values indicate the performance of our purposed model

Bold italic values indicate the performance of our ensemble model by using all folds of models to make a final prediction

Models RMSE R
2 Accuracy Precision Recall F1 AUC 

K-nearest neighbor 0.284 0.214 0.691 0.737 0.486 0.586 0.776

Linear regression 0.280 0.240 0.707 0.685 0.642 0.663 0.777

Random forest 0.255 0.370 0.760 0.750 0.690 0.729 0.825

Protein-Sol 0.253 0.376 0.714 0.689 0.688 0.693 0.808

XGboost 0.252 0.385 0.756 0.748 0.690 0.718 0.829

Support vector machine 0.246 0.411 0.761 0.763 0.684 0.721 0.842

DeepSol 0.241 0.434 0.763 0.771 0.738 0.695 0.845

ProGAN 0.237 0.442 0.763 0.770 0.676 0.720 0.853

SeqVec 0.236 0.458 0.767 0.754 0.715 0.734 0.858

TAPE 0.235 0.461 0.764 0.774 0.710 0.730 0.856

LSTM (All node features) 0.236 0.458 0.765 0.748 0.677 0.730 0.855

GraphSol (No contact) 0.235 0.462 0.763 0.710 0.676 0.729 0.853

GraphSol 0.231 0.483 0.779 0.775 0.693 0.732 0.866

GraphSol (Ensemble) 0.227 0.501 0.782 0.790 0.702 0.743 0.873

Table 4 Comparisons of  different methods on  the  S. 
cerevisiae test set

Italic values indicate the best performance of our single model and ensemble 
model, respectively
a Results produced by [7]
b Results produced by us

Solubility predictors R
2

GraphSol (ensemble) 0.372

GraphSol 0.358

ccSola 0.302

Protein-Sola 0.281

CamSola 0.160

DeepSola 0.090

ProGANb 0.084
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Conclusions
In this study, we introduce the GraphSol model, a novel 
sequence-based solubility predictor. Compared to other 
methods, we utilized predicted protein contact maps 
that played a key role in bridging protein topology 
attribute and attentive graph neural network. We found 
that the predicted contact probabilities between resi-
dues are better to represent the pairwise relations than 
discrete states. In the future, such a method is poten-
tially useful to protein attribute predictions including 
protein function, protein–protein interaction, protein 
folding, and drug design.
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