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Abstract. Survival prediction using whole slide images (WSIs) can pro-
vide guidance for better treatment of diseases and patient care. Previous
methods usually extract and process only image features from patches
of WSIs. However, they ignore the significant role of spatial informa-
tion of patches and the correlation between the patches of WSIs. Fur-
thermore, those methods extract the patch features through the model
pre-trained on ImageNet, overlooking the huge gap between WSIs and
natural images. Therefore, we propose a new method, called SeTranSurv,
for survival prediction. SeTranSurv extracts patch features from WSIs
through self-supervised learning and adaptively aggregates these features
according to their spatial information and correlation between patches
using the Transformer. Experiments on three large cancer datasets indi-
cate the effectiveness of our model. More importantly, SeTranSurv has
better interpretability in locating important patterns and features that
contribute to accurate cancer survival prediction.

Keywords: WSI · Survival analysis · Transformer · Self-supervised
learning

1 Introduction

Survival analysis generally refers to a statistical process that investigates the
occurrence time of a certain event. Accurate survival analysis provides invalu-
able guidance for clinical treatment. For instance, the prognostic models in sur-
vival prediction can show the interactions between different prognostic factors
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in certain diseases. These results from survival prediction would allow clinicians
to make early decisions on the treatment of diseases. Such early clinical inter-
ventions are crucial for the healthcare of patients.

There have been many computational methods proposed for survival anal-
ysis from whole slide images (WSIs) recently. Traditional methods generally
select several discriminative patches from manually annotated Region of Inter-
ests (RoIs) and then extract features for predictions [16–18,20]. Relatively new
methods [11,14,22] choose patches without using RoI annotations, as RoI anno-
tations require heavy manpower. The previous methods that do not need RoI
annotations usually adopt the ImageNet [13] pre-trained network to extract
patch features from WSIs. For instance, WSISA proposed by Zhu et al. [22]
extracts patches from the WSIs and gathers them into clusters of different pat-
terns. WSISA adopts DeepConvSurv [21] to select meaningful patch clusters.
These clusters are then aggregated for later prediction. Li et al. [11] propose a
survival analysis method that first constructs a topological relationship between
features and then learns useful representative and related features from their
patches through a graph convolutional network [10] (GCN). However, extract-
ing accurate patch features for survival analysis and integrating patch features
to obtain an aggregated set of patient-level features constitute the two signifi-
cant challenges. As stated, pre-training models overlook the huge gap between
WSIs and natural images and no available labels can be used to fine-tune the
pre-training models. As a result, the patch features from pre-trained models can-
not satisfy the accuracy requirement for survival analysis. Additionally, previous
methods do not notice the significant role of patch spatial information and the
correlation between patches of WSIs. These methods usually separately process
each cluster of patches or every single patch from the WSIs of the patient. This
is due to the large scale of WSI, which makes it difficult to integrate spatial
information into the model. Therefore, how to integrate patch features to obtain
patient-level features is also an open question.

Recent studies have shown that SimCLR [1], a self-supervised learning
method, can train a model with excellent feature extraction ability through
contrastive learning. The feature extraction ability of this model is comparable
to the supervised learning model. Therefore, SimCLR is introduced to train a
better model to extract patch features. Otherwise, the Transformer has been
widely used for sequence problems recently. The Transformer includes position
encodings and self-attention modules. Through certain position encodings, the
model can easily restore the WSI spatial information. For each unit in the input
sequence, self-attention can get the weight of attention from other units. The
weight of attention reflects the correlation between the patches. Since it is impos-
sible to input a whole WSI to fuse the spatial information, we extract patch fea-
tures selected from the WSI. The features are added with corresponding position
encodings to form a sequence to input into the Transformer. The self-attention in
Transformer can automatically learn the correlation between patches, and spa-
tial information is also learned through position encodings to obtain patient-level
features.
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In this paper, we propose a model called SeTranSurv, which adopts Self-
Supervised learning (SSL) to obtain accurate features from WSIs and employs
Transformer to aggregate patches according to their correlation and spatial
distribution. The contributions are summarized as follows: (1) We adopt Sim-
CLR to get a better representation of patch features; (2) We employ the Trans-
former to aggregate patches according to their correlation and spatial distribu-
tion; (3) We use attentional mechanisms to automatically locate features that
are highly relevant to survival analysis, which provides better interpretability.
Our work attempt to construct the spatial information and correlation between
patches and integrates them for accurate survival prediction in WSIs. Exten-
sive experiments on WSI datasets demonstrate that our model outperforms the
state-of-the-art models by providing more precise survival risk predictions.

2 Methodology

An overview of the proposed framework is shown in Fig. 1. Motivated by WSISA
[22]: Firstly, we select patches from the non-background area of each WSI and use
all of them to train the SSL model by SimCLR [1] to train a feature extraction
model ResNet18 [7]. Secondly, we re-select 600 patches in the non-background
area of each WSI and then use the ResNet18 trained by SimCLR to extract
features for every patch. At the third step, a Transformer Encoder takes both
each patch feature and the corresponding position embedding information as
input. Finally, The fused information from Transformer Encoder is sent to a
Muti-Layer Perception (MLP) to get the final risk score.

Fig. 1. An overview of the proposed framework. The left part is the advanced SSL
method SimCLR [1] for training a feature extraction model ResNet18 [7]. Besides, the
middle section is the flow of Transformer Encoder [5] for survival analysis and the right
section is the detail of the Transformer Encoder block.
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Sampling from WSIs. The primary purpose of this stage is to select some
patches from WSIs. A patient often has multiple WSIs, and patch candidates
from different WSIs of the patient reflect the survival risk collectively. Therefore,
we extract patches from non-background area of each WSI of the same patient
and aggregate their WSI results later. The patches with the size of 512×512×3
are extracted from 20X (0.5µ per pixel) to capture detailed information of the
images. While randomly selecting the patches, we also record the corresponding
coordinate values of the patches in the original WSI image to facilitate the
subsequent position encoding.

Train Feature Extraction Model via Self-supervised Learning. The
main goal of this step is to obtain a model that can extract patch features
better than the ImageNet pre-trained model. There is a big difference between
the ImageNet and WSIs, and we do not have corresponding patch labels to fine-
tune the model. SimCLR is a self-supervised learning model proposed by Hinton
[1]. SimCLR can train a model with excellent feature extraction ability without
the use of labels, and the feature extraction ability of the trained model is com-
parable to supervised learning. For WSIs, which are significantly different from
natural images, we select many unlabeled patches from the WSIs in the train-
ing set. These patches are used to train a feature extraction model, ResNet18,
through SimCLR. The trained ResNet18 is used to extract the characteristics of
patches in the following work.

The specific workflow of SimCLR is shown on the left of Fig. 1. SimCLR
learns representations by maximizing consistency between differently augmented
views of the same data example. The way to maximizing the consistency is to
use the contrastive loss [6] in the potential space. This framework comprises
the following four major components: (1) A data augmentation module that
transforms any given data example randomly to two correlated views of the
same example. The data augmentation followed the same strategies as used in
SimCLR for natural images. The image is represented by x. We use two different
data augmentation methods to get x̃i and x̃j , which is regarded as a position
pair. (2) A neural network based encoder f that extracts representation vectors
from augmented data examples. We use ResNet18 [7] to obtain patch features
hi = f(x̃i) where hi is the output after the average pooling layer. (3) A small
MLP g maps representations to the space where contrastive loss is applied. We
use MLP to obtain zi = g(hi) = W (2)ReLU(W (1)hi). (4) A contrastive loss
function defined for a contrastive prediction task. For a given batch size N ,
the set {x̃k}, k ∈ {0...N} includes a positive pair of examples x̃i and x̃j . The
contrastive prediction task aims to identify x̃j in {x̃k}k �=i for a given x̃i.

We randomly sample a minibatch of N examples and define the contrastive
prediction task on pairs of augmented examples derived from the minibatch,
resulting in 2N data points. We do not sample negative examples explicitly.
Instead, given a positive pair, similar to [2], we treat the other 2(N − 1) aug-
mented examples within a minibatch as negative examples. We use NT-Xent
loss [12] to optimize the model to enhance feature extraction ability for the
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ResNet18. These steps ensure that the views of different images are far apart
in the potential space and the views of the same image are close together, thus
improving the model’s presentation capability. Therefore, we can train a model
with excellent feature extraction ability through contrastive learning without
labels. The model avoids the inapplicability of features caused by differences of
data in different fields compared with the ImageNet pre-trained model.

Feature Fusion via Transformer with Position Encoding. The Trans-
former includes position encodings and self-attention modules. Through certain
position encodings, the model can easily restore the WSI spatial information. For
each unit in the input sequence, self-attention can get the weight of attention
from other units. The weight of attention reflects the correlation between the
patches. Our Transformer Encoder [5] for WSIs follows the architecture design
for NLP [5]. For a whole slide image, we sample N (set as 600) patches to get
X ∈ RN×H×W×C as input into the ResNet18 trained by SimCLR, and the out-
put h = f(X) ∈ RN×512 represents the feature of N patches. (H × W × C) is
the shape of patches corresponding to (512 × 512 × 3).

Position embeddings [5,15] are added to the patch embeddings to retain
position information. We use two-dimensional positional emebedding [5] in this
work. To be specific, consider the inputs as a grid of patches in two dimensions.
The corresponding horizontal coordinate and vertical coordinate of each patch
in WSI are embedding respectively to obtain the position encodings. The x axis
and y axis are represented by X-embedding, and Y-embedding, respectively. The
embedding size of x axis and y axis are both 24. The 48-dimensional position
vector p ∈ RN×48 is spliced with the corresponding vector h to form a 560-
dimensional feature vector, z0 = h ⊕ p, where ⊕ is the concatenation operator
and z0 ∈ RN×560. We input z0 into the Transformer Encoder for the integration
of features and spatial information.

As shown on the right of Fig. 1, the Transformer Encoder [5] is composed of
multiple encoding blocks, and every encoding block has constant widths. The
encoding block dimension N is the same as the number of patches sampled from
a WSI. Similar to the token of BERT [3], we prepend a learnable embedding
to the sequence of embedded patches (z0

0), whose state at the output of the
Transformer encoder (z0

L) serves as the WSI representation y. The Transformer
encoder consists of alternating layers of multiheaded self-attention [3] (MSA)
and MLP blocks (Eq. (1), (2)). The self-attention module can calculate the
correlation between the features of different patches through attention mecha-
nism. Layernorm (LN) is applied before every block and residual connections
[7] after every block. The MLP contains two layers with a GELU non-linearity.
Our Transformer Encoder is composed of six encoding blocks, and each encoding
block has four heads, among which the hidden size of MLP is 128.

tl = MSA(LN(zl−1)) + zl−1, l = 1...L (1)

zl = MLP (LN(tl)) + tl , l = 1...L (2)
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L(R) =
∑

i∈{i:Si=1}
(−Ri + log

∑

j∈{j:Tj≤Ti}
exp(Rj)) (3)

The output y = LN(z0
L ) represents the high-level semantic features fusion

by Transformer Encoder. It goes through an MLP Head module [5] R =
W (2)ReLU(W (1)y) and directly generates predicted risks (Eq. 3). We integrate
the regression of survival risk with high-level feature learning on WSIs. For a
patient with multiple WSIs, we average the risk scores of all WSIs for the patient
and get the final risk score. The loss function [22] is negative Cox log partial like-
lihood (Eq. 3) for censored survival data, and Si, Ti are the censoring status and
the survival time of i-th patient, respectively.

3 Experiments

Dataset Description and Baselines. To verify the validity and generaliza-
tion of SeTranSurv, we apply our methods on three different-sized cancer survival
datasets with whole slide pathological images. They are collected from TCGA
[8]. The three datasets are Ovarian serous cystadenocarcinoma (OV), Lung squa-
mous cell carcinoma (LUSC), and Breast invasive carcinoma (BRCA). The OV,
LUSC and BRCA correspond to small, medium, and large datasets, respectively.
The datasets are prepared for multi-omics study, we keep samples with complete
multi-omics data. Some statistic facts of WSIs used in the experiments are listed
in Table 1. We perform a 5 fold cross-validation on all these datasets.

Table 1. Dataset statistics. Some patients may have multiple WSIs on record.

Cancer subtype No. patients No. censored No. WSIs No. valid patches

LUSC 329 194 512 117649

OV 298 120 1481 196302

BRCA 609 530 1316 274600

SeTranSurv achieves survival analysis from WSIs without using RoIs anno-
tations, so we compare it with the state of the art methods in survival prediction
of WSIs without using RoIs annotations, including WSISA [22], DeepGraphSurv
[11], CapSurv [14], DeepAttnMISL [19] and RankSurv [4].

Implementation Details. We use Adam optimizer to optimize all methods,
and the learning rate is set to 3e−4 by default. We only changed the batch size to
512 for a balance of performance and running time in SimCLR, and the rest of the
parameters are the same as SimCLR. We train the Transformer part with a mini-
batch size of 32. All hyperparameters were determined for optimal performance
on the validation set. Experiments are conducted on a single NVIDIA GeForce
GTX 1080 GPU with 11 GB memory.
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Results and Discussions. To assess the performance of SeTranSurv, we use
the concordance index (C-index) as the evaluation metric. C-index is a standard
evaluation metric in survival prediction [9]. It ranges from 0 to 1. The larger
the C-index is, the better the model predicts. The training time of our model
increases linearly with the sample size. It takes about 38 h for the SimCLR
to train a ResNet18 through WSI patches, and about 6 h to train the final
Transformer model for LUSC dataset.

Table 2. Performance comparison of the proposed method and other methods using
C-index values on three datasets. The method that using the SimCLR to extract the
patch features on the basis of the original method is marked with * in the table. We
use OursV1 to indicate that SimCLR and position information are not used in our
method, and use OursV2 to indicate that SimCLR is not used in our method.

Model LUSC OV BRCA

WSISA [22] 0.612 0.601 0.637

WSISA * 0.636 0.610 0.639

DeepGraphSurv [11] 0.647 0.640 0.674

DeepGraphSurv * 0.675 0.659 0.685

CapSurv [14] 0.660 0.641 0.662

CapSurv * 0.665 0.653 0.671

DeepAttnMISL [19] 0.670 0.659 0.675

RankSurv [4] 0.674 0.667 0.687

OursV1 0.662 0.655 0.686

OursV2 0.687 0.673 0.690

SeTranSurv 0.701 0.692 0.705

Table 2 shows the C-index values on three datasets. Our method attains
the best C-index values that present the best prediction performance among all
methods. Our approach outperforms the previous best approach by an average of
3% on all three datasets. The result illustrates the proposed method is effective
and universal.

To explore the effectiveness of SimCLR in extracting features from patches,
we conduct a comparative experiment in all methods on whether use the model
trained by SimCLR to extract features of patches. As can be seen from Table 2,
the features extracted from the SimCLR-trained model can improve the results
well in almost methods, which indicates that the model trained with SSL in
WSI patches can obtain a better feature extraction ability than the ImageNet
pre-trained model. To verify the effectiveness of self-attention and location infor-
mation in our method, we conduct an ablation experiment. The result of OursV1
shows that self-attention can learn the correlation between patches and obtain
good results. The result of OursV2 indicates that position information enables
the model to combine the spatial information of entire WSI, which also improves
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the results. The above results indicate SeTranSurv has better feature extraction
ability and feature aggregation capability.

Fig. 2. Kaplan-Meier survival curves of different methods for LUSC datasets in the
test set. High risk (higher than the median) groups are plotted as brown lines, and low
risk (lower than or equal to median) groups are plotted as blue lines. The x-axis shows
the time in days, and the y-axis presents the survival probability. Log-rank p-value is
displayed on each figure. (Color figure online)

Given the trained survival models, we can classify patients into low-risk or
high-risk groups for personalized treatments by the predicted risk scores in the
test set. Two groups are classified by the median of the predicted risk score.
Patients with longer survival time should be divided into the low-risk group,
and with short survival time should be divide into the high-risk group. To mea-
sure if those models can correctly divide patients into two groups, we draw
Kaplan-Meier survival curves of LUSC dataset in Fig. 2. The log-rank test is
conducted to test the difference between two curves and evaluate how well the
model will classify testing patients into low and high-risk groups. It is shown
that the proposed method can attain the most significant result of the log-rank
test.

Fig. 3. Left: annotation of RoIs; Right: The blue part represents the parts with larger
weight given by the model in the randomly selected patches. It can be seen that the
patches selected in the RoIs region are generally given a relatively large weight, while
only a small number of patches in the non-RoIs region are given a relatively large
weight. (Color figure online)
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SeTranSurv uses the attention mechanism to recognize significant patterns
in WSI automatically. As shown in Fig. 3, we draw all the randomly selected
patches whose weight assigned by the model exceed the median. We measured
the learned attentions patches in Fig. 3, and 20 repeated experiments showed
that 85% of selected patches had greater attention values than the average in
the ROI regions, significantly higher than the 26% in non-ROI regions. The result
indicates that the model can identify the patches that are highly correlated with
survival analysis and give these patches a large weight. The patches with large
weight correctly highlight most of the RoIs annotated by medical experts, which
shows that our method can locate useful features and have good interpretability.

4 Conclusion

We propose SeTranSurv to combine SSL and the Transformer for survival analy-
sis in WSIs. SeTranSurv can extract patch features better and use the correlation
and position information between patches to fuse the features that are useful for
survival analysis in the entire WSI. Extensive experiments on three large cancer
datasets indicate the effectiveness of SeTranSurv.
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