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A B S T R A C T   

Background: Genomic information is nowadays widely used for precise cancer treatments. Since the individual 
type of omics data only represents a single view that suffers from data noise and bias, multiple types of omics 
data are required for accurate cancer prognosis prediction. However, it is challenging to effectively integrate 
multi-omics data due to the large number of redundant variables but relatively small sample size. With the recent 
progress in deep learning techniques, Autoencoder was used to integrate multi-omics data for extracting 
representative features. Nevertheless, the generated model is fragile from data noises. Additionally, previous 
studies usually focused on individual cancer types without making comprehensive tests on pan-cancer. Here, we 
employed the denoising Autoencoder to get a robust representation of the multi-omics data, and then used the 
learned representative features to estimate patients’ risks. 
Results: By applying to 15 cancers from The Cancer Genome Atlas (TCGA), our method was shown to improve the 
C-index values over previous methods by 6.5% on average. Considering the difficulty to obtain multi-omics data 
in practice, we further used only mRNA data to fit the estimated risks by training XGboost models, and found the 
models could achieve an average C-index value of 0.627. As a case study, the breast cancer prognosis prediction 
model was independently tested on three datasets from the Gene Expression Omnibus (GEO), and shown able to 
significantly separate high-risk patients from low-risk ones (C-index>0.6, p-values<0.05). Based on the risk 
subgroups divided by our method, we identified nine prognostic markers highly associated with breast cancer, 
among which seven genes have been proved by literature review. 
Conclusion: Our comprehensive tests indicated that we have constructed an accurate and robust framework to 
integrate multi-omics data for cancer prognosis prediction. Moreover, it is an effective way to discover cancer 
prognosis-related genes.   

1. Introduction 

Cancer is a complex disease that involves a series of interactions 
between genes and environments. Patients of the same cancer type have 
been observed significantly variant in cancer outcomes among clinical 
studies, which contributes the most to hindering the development of 
effective therapies for cancers [1]. Therefore, it is important to precisely 
separate high-risk patients from low-risk ones according to genomic 
information. Currently, many studies have been designed to evaluate 
cancer prognosis risks based on genomics information [2], and the most 
frequently used data is gene expression (mRNA) measured by the 

microarray techniques [3]. With the development of next-generation 
sequencing techniques, many other types of genomic data are made 
available, including DNA methylation [4], miRNA [5], and copy number 
variation (CNV) [6]. Since these techniques provide different views of 
cancer patients, it is beneficial to integrate multi-omics data for 
capturing complexity in the cancer prognosis prediction. 

Recently, The Cancer Genome Atlas (TCGA) organization has 
sequenced multiple types of omics data from more than ten thousand 
samples over 33 cancer types [7], enabling integrative cancer analyses 
based on multi-omics data. In this way, many statistical methods have 
been developed for different biological questions. For example, Rohart 
et al. designed a general package based on the sparse partial least 
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square-discriminant analysis for omics data integration and extraction 
[8]; Mariette et al. used an unsupervised multiple kernel framework to 
predict breast cancer clinical outcomes [9]; Kim et al. designed a 
grammatical evolution neural network to evaluate ovarian cancer risks 
[10]; Ahmad proposed a hierarchical Bayesian graphical model that 
combined a Gaussian mixture model with an accelerated failure time 
model to detect clinically relevant biomarkers for breast cancer [11]; 
Corett combined the sparse correlation matrix estimator with the 
maximum likelihood estimator algorithm to identify differentially 
expressed genes [12]; Tong developed the HC-Cox method with a hier-
archical clustering framework to extract multi-omics data for colon 
cancer prognosis prediction [13]. Though these studies have been 
carefully designed to integrate multiple omics data, the employed linear 
methods are limited to capture the representative features from thou-
sands of variables. It is even worse if considering the high dimensions of 
heterogeneous variables during the processing of multi-omics data [14]. 

Recently, deep learning (DL) techniques have been shown with su-
perior performance in dealing with nonlinear problems, and many DL- 
based methods were designed for cancer survival analysis. For 
example, Cheerla et al. developed DL-Cox method by inputting the 
multi-omics features into a deep neural network to estimate cancer 
outcomes [15]. Chaudhary et al. employed the Autoencoder to extract 
representative features and used the features for liver cancer subtype 
identification [16]. Following this study, Lee et al. used the Autoencoder 
to rebuild representative composite features from three types of omics 
data, and input the learned features into the Cox model to separate the 
high-risk patients of lung cancer (AE-Cox) [17]. Li et al. individually 
used Autoencoders for each omics features respectively, and finally 
combined the generated features to predict the prognosis of breast 
cancer (ContactAE-Cox) [18]. However, Autoencoder is fragile from 
data noises when learning representative features for input data [19]. 
Additionally, these previous studies usually focused on the individual 
cancer type without making comprehensive tests on pan-cancer. 

In this study, we designed a new framework to integrate multi-omics 
data by the denoising Autoencoder for accurate cancer prognosis pre-
diction (DCAP). By inputting the multi-omics data into the unsupervised 
denoising Autoencoder (DAE), we obtained the representative features 
for the high dimensional input data, and then utilized these learned 
features to accurately estimate cancer risks through the Cox propor-
tional hazard model. This framework was comprehensively tested on 15 
cancers from TCGA database. By comparison, DCAP averagely improved 
C-index values by 6.5% over previous methods. Considering the diffi-
culty to obtain multi-omics data in practice, we further fitted the esti-
mated risks by training XGboost models based on mRNA data only. The 
constructed XGboost models were shown to achieve an average C-index 

value of 0.627 with dozens of features. As a case study, the independent 
tests on three breast cancer datasets from the GEO indicated that the 
constructed model by XGboost can separate high-risk patients from low- 
risk ones significantly (C-index>0.6, p-values<0.05) by using mRNA 
only. Based on genes identified by the XGboost and differential 
expression analysis, we identified nine prognostic markers (ADIPOQ, 
NPY1R, CCL19, MS4A1, CCR7, CALML5, AKR1B10, ULBP2, and BLK) 
highly associated with breast cancer prognosis, among which seven 
genes have been proved by literature review. 

2. Materials and methods 

2.1. Datasets 

In this study, we downloaded cancer datasets from TCGA level 3 (htt 
ps://tcga-data.nci.nih.gov/tcga/) through the R package “TCGA- 
assembler 2” v1.0.3 [20]. The datasets contained four types of 
multi-omics data: mRNA, miRNA, DNA methylation, and copy number 
variation (CNV), where “mRNA” was RNA sequencing data generated by 
the UNC Illumina HiSeq_RNASeq V2; “miRNA” was miRNA sequencing 
data obtained by the BCGSC Illumina HiSeq miRNASeq; DNA methyl-
ation data was generated by the USC HumanMethylation450, and CNV 
data was generated by the BROAD-MIT Genome wide SNP_6. 

Since CNVs and DNA methylations reflect information on the sites 
representing millions of variables, we extracted their respective gene- 
level features by averaging the copy numbers of all CNV variations or 
the DNA methylations in CpG sites on each gene. For all four types of 
omics data, we processed the missing values following the previous 
study [16]. In each cancer data, we excluded features that were missing 
in more than 20% of the patients, and then excluded patient samples if 
they missed more than 20% of the remaining multi-omics features. Af-
terward, we excluded cancer datasets with fewer than 50 uncensored 
samples. For the left samples, the missing values were imputed based on 
the median values by using R package “imputeMissings” [21]. For the 
mRNA and miRNA data, the expression values were transformed 
through the log function. Afterward, all features were standardized to a 
mean of zero and standard deviation of one based on all cancer samples. 
Finally, we used the common features shared by all these 15 cancers that 
include 16160 mRNA features, 354 miRNA features, 20123 methylation 
features, and 23600 CNV features (see Table 1). It should be mentioned 
that our study used data only from cancer patients without involving 
data from any normal persons or patients of other diseases. 

Three external breast cancer datasets were collected from the GEO 
database (https://www.ncbi.nlm.nih.gov) for independent tests. Among 
these, GSE2990 contains RNA-seq data and survival information of 126 

List of abbreviations 

AE-Cox The Cox model using the compressed features by 
Autoencoder 

BLCA Bladder Urothelial Carcinoma 
BRCA Breast invasive carcinoma 
CESC Cervical squamous cell carcinoma and endocervical 

adenocarcinoma 
CNV Copy number variation 
COAD Colon adenocarcinoma 
ConcatAE-Cox The Cox model using the compressed features by 

ConcatAE 
Cox-EN Cox with elastic net 
Cox-PH Cox proportional hazard model 
DCAP A framework to integrate multi-omics data by Denoising 

Autoencoder for Accurate cancer prognosis prediction 
DEG Differentially expressed gene 

DL-Cox Deep neural network Cox method 
ESCA Esophageal carcinoma 
GEO Gene Expression Omnibus database 
HC-Cox A hierarchical clustering framework to extract multi-omics 

data for cancer prognosis prediction 
HNSC Head and Neck squamous cell carcinoma 
LGG Brain Lower Grade Glioma 
LIHC Liver hepatocellular carcinoma 
LUAD Lung adenocarcinoma 
LUSC: Lung squamous cell carcinoma 
MESO Mesothelioma 
PAAD Pancreatic adenocarcinoma 
PCA-Cox Cox model used the reconstructed features by PCA 
SARC Sarcoma 
SKCM Skin Cutaneous Melanoma 
STAD Stomach adenocarcinoma 
TCGA The Cancer Genome Atlas  
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breast cancer samples submitted by the Princess Margaret Cancer 
Centre. In GSE9195 we downloaded 77 breast cancer patients’ infor-
mation, and GSE17705 contains 298 breast cancer patients’ data shared 
from Nuvera Biosciences. All the datasets were processed to remove the 
batch effects using the R package “limma” [22]. 

2.2. The architecture of DCAP method 

As shown in Fig. 1, the high-dimensional features of multi-omics data 
were input into a DAE network to obtain the representative features, 
which were then utilized to estimate patients’ risks through the Cox 
model. Considering the difficulty of obtaining multi-omics data in 
clinics, we further constructed the XGboost models by using mRNA data 
to fit the estimated risks. The constructed models were used to predict 
the cancer patients’ risks in the independent datasets. Besides, based on 
genes identified by the XGboost and differential expression analysis, we 
identified 9 prognostic markers highly associated with breast cancer 
prognosis. 

2.3. Denoising autoencoder networks 

Autoencoder is one kind of unsupervised neural network to learn an 
efficient representation of the input data. Supposing x = (x1,…, xn) is a 
list of input features, x is encoded to a smaller size of representative 
features that are decoded to x’, which is the output of the Autoencoder 
with the same size as x. The mean square error (MSE) was used to 
measure the difference between the input x and the output x’: 

mseloss(x, x
′

) =
∑n

i=1

(
xi − x

′

i

)2
(1) 

Compared with Autoencoder, DAE constructs the damaged data by 
adding noise to the high-dimensional features, and restores the original 
input by encoding and decoding steps. The design can make the deep 

neural network construct the real informative and robust low- 
dimensional representation. The damaged input is written as: 

x̃= qD(x̃|x) (2) 

The loss of DAE is expressed as: 

lDAE =
∑n

i=1

(
xi − x

′

i

)2
=
∑n

i=1
(xi − fd(fe(x̃)))2 (3) 

To avoid overfitting in our problem with high-dimensional features, 
we added an L2 regularization penalty term as: 

L(x, x′

) = lDAE + γ
∑k

i=1
F1→i(x)2

2 (4)  

, where γ is the coefficient for the L2-norm regularization penalty, F1→i is 
the node activity in the deep neural network, k is the total number of 
layers (input, output, and hidden layers). Here, γ was set 0.0001, and 
tanh function was used as the activation function for all layers. In this 
study, considering the high-dimensional multi-omics features (>60000), 
we used a deep neural network with three hidden layers, i.e. k = 5. Based 
on the results of convergence analysis and parameter sensitivity study 
(Figs. S1–S2), we set the three hidden layers as [500, 200, 500], and the 
training epoch as 100. The RMSE was converged after 50 epochs 
(Fig. S1). The DAE was trained by back-propagation via the Adam 
optimizer. For different cancer types, we selected learning rate (LR) 
from {0.01, 0.001, 0.0001}, and the batch size from {32, 64, 128} based 
on the optimized loss values. Here, the decoded output x′

i was used to 
guide the encoding of representative features, which will then be input 
into the Cox-PH model. 

2.4. Cox proportional hazard model for patients’ risk estimation 

The learned representative features from the middle-hidden layer of 

Table 1 
The statistic information of used cancer data in TCGA.  

Cancer Uncensored Total Cancer Uncensored Total 

BLCA (Bladder) 151 336 LUAD (Lung) 155 441 
BRCA (Breast) 78 613 LUSC (Lung) 135 329 
CESC (Cervical) 67 290 MESO (Mesothelioma) 74 87 
COAD (Colon) 59 255 PAAD (Pancreatic) 92 173 
ESCA (Esophageal) 75 180 SARC (Sarcoma) 93 250 
HNSC (Head&Neck) 168 404 SKCM (Skin) 212 447 
LGG (Brain) 124 504 STAD (Stomach) 144 366 
LIHC (Liver) 123 357 Total 1750 5032  

Fig. 1. The architecture of DCAP proposed to integrate multi-omics data for cancer prognosis prediction. A) Estimating patients’ risks by using DCAP. B) Con-
structing XGboost models with mRNA data to fit the estimated risks. C) Identifying the prognostic markers highly associated with cancers. 
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the DAE network were used for building the Cox proportional hazard 
(Cox-PH) models to estimate the cancer risks. The multivariate Cox-PH 
model is defined as: 

h(t|Xi)= h0(t)θi (5)  

, where h0(t) is the baseline hazard function to describe how the risk 
changed at time t, and θi = exp(βXi) is used to describe how the hazard 
varied in response between the coefficient vector β and covariate vector 
Xi for patient i. The probability of the death for the patient i at the time ti 
is written as: 

Li(β)=
h0(ti)θi

∑
j:tj>ti h0(ti)θj

(6) 

Hence, the corresponding log partial likelihood function is given as: 

l(β) =
∑

i
δj

(

Xiβ − log
∑

j:tj>ti

θj

)

(7)  

, where δj indicates the jth sample to be uncensored or not. This partial 
likelihood function was solved by using the Newton-Raphson algorithm 
as implemented by the “glmnet” package in R [23]. The computed β is 
used to estimate the risk scores in the Cox-PH model. At last, the patients 
are classified into two risk subgroups based on the median predicted risk 
value. 

2.5. mRNA-based XGboost model for risk prediction 

To improve the interpretability and clinical applicability of our 
method, we employed XGboost to select a small number of key genomic 
features for building prediction models. XGboost is an ensemble of K 
regression trees (T1(X,Y)…Tk(X,Y), where X is the feature vector and Y 
is the corresponding risk. Supposing that the dataset contains n exam-
ples and p features D = {(xi,yi)}(|D | = n,xi ∈ X,yi ∈ Y), the ensemble 
XGboost model uses K trees to predict the patients’ risks: 

ŷi =∅(xi) =
∑K

k=1
fk(xi), fk ∈ F (8)  

where F = {f(x)= wq(x)}(q : Rm →T,w∈ RT) represents the space of 
the regression trees, q is the structure of the tree, T is the number of 
leaves in each tree, and fk represents a regression tree’s structure q with 
the weight w. This method was implemented by the “XGboost” package 
in R [24]. In this study, we selected the depth from Refs. [2,8] and the 
learning rate from nine values (0.01 and 0.05* [1,8]). These parameters 
were optimized by minimizing the mean square error through the 
10-fold cross-validation (CV). All other parameters in our study used the 
default values in the R package “XGboost”. The selected genes by 
XGboost were considered candidate genes related to cancer patients’ 
survival. 

2.6. Evaluations of cancer prognosis prediction 

In the cancer prognosis prediction, the performance was usually 
estimated through the C-index values. The C-index represents the frac-
tion of all pairs of individuals whose predicted survival times are 
correctly ordered based on the Harrell’s C statistics [25]: 

C − index=
1

num
∑

iε{1…n|δi=1}

∑

ti>tj

I
[
ri > rj

]
(9)  

, where ri and rj are the predicted survival risks for patients i and j, ti and 
tj are the actual survival times for patients i and j, δ indicates the sample 
is uncensored or not, num denotes the number of comparable patient 
pairs and I[.] is the indicator function. A higher C-index value indicates a 
better prediction with a value of 0.5 meaning a random prediction. In 

addition, the log-rank p-value was computed by the “survival” package in 
R for the probability to better separate patients into high-risk and low- 
risk groups by random. 

2.7. Differential expression analysis 

Differential expression analysis is a kind of downstream analysis 
after cancer prognosis prediction, which is used for identifying genes 
with the most significant expression differences according to the divided 
sub-groups. These genes are regarded as potential targets that may affect 
the prognosis of cancer patients. In our study, the differentially 
expressed genes (DEGs) were genes with |log2 (fold change)|>0.5 and 
corrected p-value <0.05 detected by the “limma” package in R [22]. At 
last, the DEGs which were also selected by XGboost are seen as the 
prognostic markers which highly related to cancer prognosis. 

2.8. Parameters optimization and model training 

For each cancer type, we randomly split the TCGA data into 80% for 
training and 20% for test. Each time, the representative features were 
reconstructed by the DAE network, and the hyperparameters were 
optimized according to the loss function. For the training of Cox and 
XGboost models, hyperparameters were optimized based on the 10-fold 
CV in the training set. With the optimized parameters, a model was re- 
trained on the whole training dataset and tested on the test dataset for 
the final performance. To remove fluctuations brought by random se-
lections of the test dataset, we employed a bootstrapping strategy and 
repeated this process 10 times to obtain averages. 

2.9. Methods for comparisons 

In this study, we compared the cancer prognosis prediction perfor-
mance with three traditional methods (the Cox model used the recon-
structed features by PCA (PCA-Cox), Cox with elastic net (Cox_EN) [26], 
and HC-Cox) and three deep learning-based methods (DL-Cox, AE-Cox, 
and ContactAE-Cox). We used default parameters for these methods. 

3. Results 

3.1. Patients’ risks estimation by multi-omics data 

As shown in Table 2, DCAP achieved essentially the same C-index 
values for the 10-fold CV and independent tests with average values of 
0.678 and 0.665 over 15 cancers, respectively. The close results indi-
cated the robustness of our method. For the 15 cancer types, the C-index 
values ranged from 0.591 to 0.823 with the highest value for LGG and 
the lowest one for STAD. The LGG has the highest C-index value likely 
because LGG has a large sample size (the 2nd largest in the dataset). 

We further detailed the contribution of each omics type in DCAP. As 
shown in Table 3, when using a single type of omics data, the mRNA 
performed best with an average C-index value of 0.628, and CNV had the 
lowest performance with a C-index value of 0.570. The miRNA and 
methylation ranked the 2nd and 3rd, respectively. Consistently, when 
excluding one omics type from the DCAP, mRNA caused the largest 
decrease of C-index value from 0.665 to 0.631, and the smallest decrease 
was caused by the exclusion of CNV. These results indicated that mRNA 
played the most important role in discriminating high-risk patients 
while CNV made the least contribution. On average, the prognosis pre-
diction using multi-omics improved the C-index value by 5.9% over the 
one using only mRNA data. 

3.2. Comparisons with other methods 

We compared the cancer prognosis prediction performance obtained 
by our method (DCAP) with other common methods using multi-omics 
data. As shown in Table 4, DCAP achieved the highest C-index values 
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between 0.591 (STAD) and 0.823 (LGG), with an average of 0.665. 
Compared with other methods, DCAP improved C-index values by 6.5% 
on average. For other methods, the PCA-Cox method achieved the 
lowest C-index values with an average of 0.584, the other two tradi-
tional methods Cox-EN and HC-Cox achieved average C-index values of 
0.602 and 0.615, which are lower than the DL-based methods. ConcatAE 
performed better than AE-Cox, but worse than our method. We imple-
mented ConcatAE-Cox by using four types of omics data and achieved a 
C-index value of 0.658, which was slightly higher than their own re-
ported one (0.644) that used two omics data (the methylation and 
miRNA) [18]. We also conducted the t-test on the results obtained by 
DCAP and the other methods, and the p-values demonstrated that our 
method had significant improvements over the other methods. 

3.3. Building light-weighted cancer risk prediction models by XGboost 

The deep learning-based cancer prognosis prediction models con-
structed by DCAP are not interpretable without providing essential gene 
features. To extract important features, we employed the XGboost 

method to construct light-weighted models (DCAP-XGB). As shown in 
Fig. 2, DCAP-XGB achieved C-index values between 0.565 (LUSC) and 
0.755 (LGG), with an average of 0.627. The differences between the C- 
index values obtained by DCAP-XGB and DCAP ranged from 3.25% 
(BLCA) to 8.27% (LUAD), with an average of 5.64%. These results 
indicated that although feature selection caused a decrease of predic-
tion, the XGboost can obtain comparable results with previous methods. 
More importantly, the XGboost model could make predictions with a 
small number of genomic features. As shown in Table S2, the models 
required 171–564 features with the most features for SKCM and the least 
ones for LUSC. 

3.4. Case study on the breast cancer 

As a case study, we applied our method to the breast cancer (BRCA) 
that contains the largest number of samples. To validate the cancer 
prognosis prediction model constructed by DCAP-XGB, we tested the 
model on three external breast cancer datasets collected from the GEO 
database: GSE2990, GSE9195, and GSE17705. As shown in Fig. 3A, for 
the three datasets, the predicted high and low-risk groups can be 
significantly separated from the survival curves with the p-values all 
below 0.05 and the similar C-index values (0.602, 0.605, and 0.611). 
These results indicated the robustness of our light-weighted risk pre-
diction models. 

Based on the divided high-risk and low-risk groups by DCAP, we 
identified 159 DEGs with corrected p-value<0.05 and |log2 fold change| 
>0.5, among which there were 45 down-regulated risk and 114 up- 
regulated risk genes (Fig. 3B). Fig. 3C shows the heat map on the 
expression of the DEGs. Among these 159 DEGs, 57 (35.9%) genes were 
confirmed to relate to the breast cancer by literature review. When 
mapped with 223 genes selected by the XGboost model, nine DEGs were 
overlapped, and seven (77.8%) of these nine genes (ADIPOQ, NPY1R, 
CCL19, MS4A1, CCR7, CALML5, and AKR1B10) have been indicated to 
associate with the breast cancer (Table 5). For the remained two genes 
(ULBP2 and BLK), although no literature has directly demonstrated an 
association with the prognosis of the breast cancer, the induction of 
ULBP2 was reported to associate with pharmacological activation of p53 
triggers anticancer innate immune response [27], and BLK is a true 
proto-oncogene capable of inducing tumors, which is suitable for studies 
of BLK-driven lymphomagenesis and screening of novel BLK inhibitors 
in vivo [28]. 

4. Conclusion and discussion 

Previously, many methods used individual types of genomic data to 
identify high-risk cancer patients from low-risk ones. Since individual 
omics type only offered a single view of cancers, the performances of 
these methods were limited. The multi-omics data analysis could bring 
more information about the cancer survival. In this study, we designed a 
deep learning framework DCAP to integrate the multi-omics data for 
cancer risk estimation. By comparing the prognosis prediction accuracy, 
the results obtained by DCAP outperformed the compared methods 
by>6.5% C-index value on average. The ablation study showed that 
mRNA performs the best, the miRNA and methylation ranked the 2nd 

Table 2 
The C-index of the cross-validations and tests on 15 cancers by DCAP.  

Cancer Validation Test Test (95% confidence) Cancer Validation Test Test (95% confidence) 

BLCA 0.678 0.646 0.611–0.68 LUAD 0.649 0.629 0.574–0.642 
BRCA 0.684 0.662 0.615–0.707 LUSC 0.581 0.597 0.540–0.651 
CESC 0.69 0.685 0.651–0.718 MESO 0.792 0.765 0.720–0.809 
COAD 0.663 0.622 0.566–0.676 PAAD 0.654 0.665 0.625–0.704 
ESCA 0.607 0.594 0.549–0.638 SARC 0.731 0.719 0.683–0.753 
HNSC 0.631 0.628 0.582–0.671 SKCM 0.656 0.644 0.590–0.695 
LGG 0.832 0.823 0.795~0.843 STAD 0.575 0.591 0.551–0.629 
LIHC 0.733 0.710 0.655–0.763 Average 0.678 0.665 0.620–0.705  

Table 3 
The contribution of each omics data for cancer outcome evaluation by using 
individual type of omics data or excluding one type from the final model.  

Omics Typea C-index Omics Typeb C-index   

DCAP 0.665 
mRNA 0.628 -mRNA 0.631 
miRNA 0.617 - miRNA 0.639 
Methylation 0.604 - Methylation 0.647 
CNV 0.570 -CNV 0.654  

a Performances by using each omics type. 
b Performances by removing each omics type from the final model. 

Table 4 
Methods comparisons by C-index values achieved on 15 TCGA cancers.   

PCA- 
Cox 

Cox- 
EN 

HC- 
Cox 

DL- 
Cox 

AE- 
Cox 

ConcatAE- 
Cox 

DCAP 

BLCA 0.582 0.605 0.611 0.623 0.626 0.634 0.646 
BRCA 0.603 0.611 0.616 0.638 0.653 0.658 0.662 
CESC 0.595 0.633 0.647 0.655 0.661 0.672 0.685 
COAD 0.568 0.580 0.591 0.617 0.628 0.622 0.622 
ESCA 0.557 0.564 0.572 0.594 0.571 0.584 0.594 
HNSC 0.553 0.573 0.580 0.609 0.602 0.608 0.628 
LGG 0.691 0.719 0.731 0.782 0.805 0.797 0.823 
LIHC 0.593 0.615 0.629 0.678 0.703 0.701 0.710 
LUAD 0.559 0.573 0.583 0.613 0.612 0.621 0.629 
LUSC 0.541 0.554 0.559 0.578 0.582 0.580 0.597 
MESO 0.660 0.675 0.708 0.737 0.752 0.747 0.765 
PAAD 0.562 0.591 0.606 0.631 0.645 0.636 0.665 
SARC 0.585 0.597 0.631 0.678 0.706 0.694 0.719 
SKCM 0.554 0.568 0.595 0.619 0.631 0.638 0.644 
STAD 0.559 0.568 0.571 0.577 0.577 0.589 0.591 
Average 0.584 0.602 0.615 0.642 0.650 0.652 0.665 
P-value 

a 
6.3E- 
8 

3.1E- 
7 

2.5E- 
7 

1.1E- 
6 

1.8E- 
6 

2.6E-5 –  

a The t-tests by comparisons with DCAP. 
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and 3rd, and the copy number variation showed the least contribution. 
At last, in the case study on breast cancer, the independent tests of 3 GEO 
data proved that the constructed prediction model can separate the 
high-risk patients from the low-risk ones significantly (C-index>0.6, p- 
values<0.05). Based on the risk subgroups divided by DCAP, we iden-
tified nine prognostic markers highly associated with the breast cancer. 

Though our method was indicated robust and reliable for predicting 
cancer outcomes, there are still many questions worth to be discussed 
below. Firstly, we found that the C-index values of different cancers 
obtained by using TCGA data fluctuated greatly. One possible reason is 
the ignoring of tumor purity and clinical factors that were already 
known to be important in TCGA [36]. Secondly, many censored samples 
in the data limited the accuracy of predicting cancer outcomes. For 
example, the censored rates are 60.7% and 64.5% for STAD and LUAD, 

Fig. 2. The C-index obtained by light-weighted DCAP-XGB compared with the DCAP. The blue parts are the C-index values obtained by DCAP-XGB and the red ones 
are those obtained by DCAP. 

Fig. 3. The case study on breast cancer. A) The results of the independent tests in three breast cancer datasets collected from GEO. B) The differentially expressed 
gene selection results in breast cancer. The red nodes represent the up-regulated risk genes and the blue nodes represent the down-regulated risk genes. The grey ones 
are the unselected genes. C) The heat map of identified DEGs in breast cancer (corrected p-value <0.05 and |log2FoldChange| >0.5). 

Table 5 
The identified prognostic markers in breast cancer.  

Gene logFC AveExp P-value XGB.importance Reference 

ADIPOQ 1.030 5.85 5.6E-5 0.002 [29] 
NPY1R 0.991 6.29 1.9E-5 0.038 [30] 
CCL19 0.860 6.29 1.1E-5 0.262 [31] 
MS4A1 0.610 5.41 1.6E-3 0.208 [32] 
CCR7 0.542 5.49 5.1E-4 0.028 [33] 
BLK 0.531 4.05 6.7E-4 0.159 – 
CALML5 − 0.534 5.06 0.0494 0.041 [34] 
AKR1B10 − 0.598 4.44 1.8E-4 0.058 [35] 
ULBP2 − 0.673 3.73 8.6E-11 0.078 – 

logFC: log2FoldChange; AveExp: Average Expression; P-value: the p-value be-
tween the divided risk sub-groups; XGB.importance: The importance computed 
by XGboost. 
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respectively. The high censored rates decreased the performance of our 
method. Thirdly, one previous study [15] showed that the clinical data is 
helpful to improve the cancer prognosis prediction performance. This is 
a potential way to improve the model prediction performance. 

In the future, we will consider the impact of heterogeneity caused by 
different clinical characteristics (including age and sex) on the prog-
nostic risk of cancer patients. Additionally, we will optimize the neural 
networks by directly optimizing the risk loss function. At last, multi- 
modal medical data have been used for estimating cancer progress 
[15,37]. We will further combine medical information such as slide 
images and clinical data for more accurate cancer prognosis estimation. 
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