
Predicting Retrosynthetic Reactions Using Self-Corrected
Transformer Neural Networks
Shuangjia Zheng,†,‡,⊥ Jiahua Rao,‡,⊥ Zhongyue Zhang,‡ Jun Xu,*,†,§ and Yuedong Yang*,‡,∥

†Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University City,
Guangzhou 510006, China
‡School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
§School of Computer Science & Technology, Wuyi University, 99 Yingbin Road, Jiangmen 529020, China
∥Key Laboratory of Machine Intelligence and Advanced Computing, Sun Yat-sen University, Ministry of Education, Guangzhou
510000, China

*S Supporting Information

ABSTRACT: Synthesis planning is the process of recursively
decomposing target molecules into available precursors. Computer-
aided retrosynthesis can potentially assist chemists in designing
synthetic routes; however, at present, it is cumbersome and cannot
provide satisfactory results. In this study, we have developed a
template-free self-corrected retrosynthesis predictor (SCROP) to
predict retrosynthesis using transformer neural networks. In the
method, the retrosynthesis planning was converted to a machine
translation problem from the products to molecular linear notations
of the reactants. By coupling with a neural network-based syntax
corrector, our method achieved an accuracy of 59.0% on a standard
benchmark data set, which outperformed other deep learning
methods by >21% and template-based methods by >6%. More
importantly, our method was 1.7 times more accurate than other state-of-the-art methods for compounds not appearing in the
training set.

■ INTRODUCTION

Organic synthesis is one of the fundamental pillars of modern
chemical society, as it provides a wide range of compounds
from medicines to materials. The synthetic route to a desired
organic compound is commonly constructed by recursively
decomposing it into a set of available reaction building blocks.1

This analysis mode was formalized as a retrosynthesis by
Corey,2,3 who ultimately won the Nobel Prize in 1990.4

Planning synthesis requires chemists to accurately predict
the disconnections for target molecules. Since molecules may
have many possible ways to decompose, the retrosynthetic
analysis of a target compound usually leads to a large number
of possible synthetic routes. It is challenging to select an
appropriate synthesis route because the differences between
routes are subtle and often depend on the global structures.
Therefore, it remains challenging even for the best chemists to
plan a retrosynthetic route for a complex molecule.5,6

To this end, many in silico methods have been developed to
assist in designing synthetic routes for novel molecules, among
which most are dependent on hand-coded reaction tem-
plates.7−15 One of the most famously commercialized
computer-assisted software packages is Chematica.10,16 It
contains about 70 000 manually curated reaction trans-
formation rules, which took the Grzybowski Scientific

Invention team more than 15 years. Based on these rules,
the synthesis routes can be built according to generalized
reaction templates. This kind of method could provide
reasonable results when the rule databases include appropriate
reaction rules and templates. However, it is not practical to
manually encode all the synthesis routes considering the
exponential growth in the number of published reactions.17

Besides, a simple template is generally not enough to reliably
predict reactions because it only identifies reaction centers and
their neighboring atoms without considering the global
information of the target molecule.
Recently, the so-called focused template-based methods

were designed through automatically extracting templates from
the reaction databases and choosing appropriate rules for the
selected templates. The key process of these approaches is to
select relevant templates for target molecules. Segler and
Waller evaluated template relevance based on molecular
fingerprints using artificial neural networks.18,19 Later, they
showed that the Monte Carlo tree combined with deep neural
networks could prioritize templates and preselect the most
promising retrosynthetic steps.5 Coley and co-workers also
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demonstrated an approach for automated retrosynthesis based
on the analogy to known reactions.20 Albeit sturdy, these
methods rely heavily on a predefined atom dictionary to map
atoms between reactants and products, which is still a
nontrivial problem.21,22 Furthermore, commonly used tools
to identify atom mapping are based on databases of expert
rules and templates, which seem to get stuck in an infinite
loop.23 At any rate, template-based methods have the
limitation that they cannot infer reactions outside the chemical
space covered by the template’s libraries and thus work poorly
when applied to new target structures and reaction types.19

To overcome the problem, template-free alternatives have
emerged over recent years. The key idea is to use a text
representation for the reactants and products (e.g., SMILES);
thus, retrosynthesis prediction is converted as machine
translations from one language (reactants) to the other
(products). Nam and Kim first described a sequence-to-
sequence (seq2seq) neural network model for the forward
reaction prediction.24 Later, Liu and co-workers reported a
similar seq2seq model that showed comparable performances
to the rule-based expert systems.25 This seq2seq model can be
trained in a fully end-to-end fashion that does not require any
atom-mapped reaction cases for training. Unfortunately, the
model does not show significant improvement in accuracy
compared to the rule-based system but produces a great
number of chemically invalid outputs.
More recently, transformer architecture has shown advan-

tages in machine translation.26 It removes traditional recurrent
units and is based entirely on the self-attention mechanism,
allowing extraction of both local and global features
irrespective of the distances between the input and output
sequences. Schwaller and co-workers employed this architec-
ture to predict the products of chemical reactions and reached
state-of-the-art results,27 which inspires us to apply the
transformer to the prediction of the retrosynthetic reaction.
In this study, we propose a novel template-free self-corrected

retrosynthesis predictor (SCROP) built on the multihead
attention transformer architecture. Our approach improved the
state-of-the-art in retrosynthesis prediction by achieving top-1
accuracies of 59.0% on the Liu’s USPTO-50K data set25 and
41.5% on single product reactions of another Jin’s data set.28

At the same time, the rates of invalid candidate precursors
could decrease from 12.1 to 0.7% by coupling with a novel
neural network-based syntax checker. When excluding similar
targets from the training set, our method achieved an accuracy

of 47.6%, which was 1.7 times higher than that of other state-
of-the-art methods. More importantly, this model requires no
handcrafted templates and atom mappings and can accurately
predict subtle chemical disconnections.

■ OVERVIEW

Data Sets. All the reaction data of our experiments were
derived from the Lowe’s study.29 For comparison, the first data
set we used is a standard benchmark including 50 000
reactions that were later separated into 10 reaction classes by
Schneider et al.,30 namely, USPTO-50K. Figure 1 shows the
distribution of each reaction class within the data set. This data
set was also employed by Liu et al. and Coley et al. for the
same task.20,25 We followed their random split strategy, with
40K, 5K, and 5K for training, validating, and testing,
respectively.
As the random splitting of the data set may cause

overestimation by separating similar reactants into the training
and test sets, we reconstructed a more challenging data set
using a cluster-splitting strategy similar to the one used in the
previous study,31 where reactions were clustered based on
topological similarities between target compounds, and
reactions belonging to the same cluster were put in the same
subset during the splitting of training and test sets. Here, the
products were clustered through the typically used Bemis−
Murcko atomic frameworks.32 The similarities of compounds
were assessed through the Tanimoto efficient of two-
dimensional (2D) fingerprints, and two compounds were
considered similar if their similarity is above 0.6. The same
proportions (80%/10%/10%) were used to split the reactions
into training, validation, and test sets, namely, the USPTO-50K
cluster. The splitting makes the retrosynthesis prediction task
significantly harder, as the model has to determine the reaction
center for a target molecule outside its training (with a low
similarity).
In addition, to further evaluate the generalization of our

model, we also considered a much bigger data set published by
Jin et al (referred to Jin’s USPTO). It contains 480 thousand
atom-mapped reactions without predefined reaction classes.
Following the preprocessing strategies by Liu et al. and
Schwaller et al.,25,33 we removed reagents from reactants and
canonicalized the molecules. This data set was divided into
400, 40, and 40K for training, development, and testing
purposes, respectively. It should be noted that there are no

Figure 1. Distribution of reaction classes within the USPTO-50K.
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classified reaction classes in this data set, and thus it is more
difficult to predict.
Problem Definition. Given an input of a target molecule

and its specified reaction type, our task is to predict likely
reactants that can react in a specified reaction type to form the
target product. In this study, a reaction was described by a
variable-length string containing one pair of SMILES notations
representing the reactants and target compound. Following the
process of Liu et al.,25 each reaction was split into a source
sequence and target sequence for model training. The source
sequence is the product of the reaction with a reaction type
token prepended to the sequence, and the target sequence is
the reactant set. For example, a protection reaction can be
described as “NCc1ccoc1.S(Cl)Cl≫[RX_5]SC
NCc1ccoc1”, where “SCNCc1ccoc1” is the source
sequence, “NCc1ccoc1.S(Cl)Cl” is the target sequence,
and “[RX_5]” is the reaction class 5 (protections).
These sequences are then encoded into one-hot matrices

with a token vocabulary (in our case, it has a total of 50 unique
tokens retrieved from the data set). In the one-hot encoding
approach, each sequence is represented by a set of token
vectors. All token vectors have the same number of
components. Each component in a vector is set to zero except
the one at the token’s index position. To make the training
procedure more stable and efficient, the input one-hot matrices
are compressed to information-enriched word-embedding
vectors following the previous work.34,35 As a result, each
input sequence is finally represented in a molecular embedding

m t t t( , , ..., )n1 2= (1)

where ti is a vector standing for a d-dimensional token
embedding for the ith token in a molecule consisting of n
tokens.

Model. Our model predicts the synthetic route for a target
molecule in a two-step manner: (1) applying a fully trained
retrosynthetic reaction predictor to infer a set of raw candidate
reactants and (2) fixing their syntax errors to make more
reasonable predictions using a molecular syntax corrector.

Retrosynthesis Predictor. In the first stage, we adapted
the transformer architecture to map the sequence of the
products to the sequence of the reactants.26 As shown in
Figure 2, the architecture of the transformer system follows the
so-called encoder−decoder paradigm to be trained in an end-
to-end fashion. The encoder layers are input with the source
molecular embedding ms = (t1, ..., tn) and iteratively transform
it into a latent representation l = (l1, ..., ln). After finishing the
encoder phasing, each step in the decoding phase outputs a
token based on the latent information l until the ending token
“⟨/s⟩” is reached to indicate the completion of output by the
transformer decoder. The predicted output yp = (y1, ..., ym) is
then used to compare with target reactants sequence mr = (t1,
..., tk), and the training goal is to minimize the gap between yp
and mr so that the model can finally infer accurate reactions.
Several identical layers are stacked for the encoding phase.

Each layer comprises a combination of a multihead self-
attention sublayer and a positional feedforward network
(FFN) sublayer. A residual connection and layer normalization
were employed to integrate the two sublayers.36

Different from the encoder, the decoder is composed of two
types of attention multihead attention layers: (i) a decoder
self-attention and (ii) an encoder−decoder attention. The
decoder self-attention focuses on the previous predictions of

Figure 2. Overview of the architecture and training procedure of the transformer-based retrosynthetic reaction predictor. “RX_5” token indicates
that the target should be decomposed through a protection reaction.
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reactants made step by step, masked by one position. The
encoder−decoder attention builds the connection between the
final encoder representation and the decoder representation. It
integrates the information of the source molecular embeddings
with the reactant strings that have been predicted so far and
thus helps the decoder to focus on appropriate places in the
input sequence.
A multihead attention unit itself comprised several scaled-

dot attention layers performing the attention mechanism in
parallel, which are then concatenated and projected to the final
values. The scaled-dot attention layers take three matrices: the
queries Q, the keys K, and the values V. The query, key, and
value matrices are created by multiplying the input molecular
embedding M by three weight matrices that were also trained
during the training process. We then compute the attention
weight for each token within a SMILES string as follows

Q K V
QK

d
Vattention ( , , ) softmax

T

k

i

k
jjjjjj

y

{
zzzzzz=

(2)

where dk is a scaling factor depending on the size of weight
matrices. The dot-product of the keys and the queries
computes how closely the keys are correlated with the queries.
The dot-product is large if the query and key are aligned well.
Each key has a corresponding value vector, which is multiplied
with the output of the softmax. By this procedure, the encoder
extracts pivotal features from the source sequence, which are
then queried by the decoder depending on its preceding
outputs. Thus, the model can learn the global-level information
from the input molecular embeddings and build a semantic
connection between the encoder and decoder.
As the transformer architecture removes the recurrent units

from traditional recurrent networks, the model lacks a way to
account for the order of words in the input SMILES strings. To
address this, we used the position encoding as proposed in the
previous study,26 which adopted the sine and cosine functions
to identify the position of different tokens in the sequence

PE PEsin
pos

timescale

cos
pos

timescale

i i d i

i d

(pos,2 ) 2 / (pos,2 1)

2 /

emb

emb

i
k
jjjj
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=

+

(3)

where pos is the position and i is the dimensional index of
position encodings. The outputs of positional encodings have
the same dimension demb as the token embeddings. The

timescale is set to 10 000 to form a geometric progression from
2π to 10 000 × 2π.
For a particular source sequence, the training objective is to

minimize the cross-entropy loss function

y m y m( , ) log( )
i

K

i i
1

∑= −
= (4)

where mi and yi are the predicted and actual values at the ith
position for the target molecular sequences, respectively.
Our best-performance models were trained for 12 h on one

GPU (Nvidia 1080TI) on the training set, saving one
checkpoint every 20 000 steps and averaging the last ten
checkpoints. More detailed hyperparameter settings of the
model are shown in Table S1. The hyperparameters were
chosen according to the performances on the validating set. A
beam search procedure37 was then used to infer multiple
reactant candidates on the test set. We used the best-
performance model to infer the reactant candidates with a
beam width of 10. Therefore, the top ten candidate sequences
ranked by overall probability are retained.

Molecular Syntax Corrector. It is important to note that
syntactically plausible molecular strings are not guaranteed to
be semantically valid. For instance, “c1ccoc” cannot be
deduced to a valid structure because it misses the token “1”
representing the closing of the heterocycle. Previous works
entirely relied on the raw outputs obtained from the default
beam search,25,33 which enumerates the top N predictions
based on the joint probability of generated tokens without
considering the chemical feasibility. Here, we further built a
transformer-based syntax corrector to automatically correct the
syntax of unreasonable SMILES strings for improving the
performances. The design of the neural network was motivated
by the grammatical error correction tool widely utilized in
natural language processing tasks.38 Figure 3 illustrates the
procedure of our syntax correction system. The syntax
corrector takes the unreasonable predictions generated from
the retrosynthetic reaction predictor and fixes their syntax
errors to increase the quality of predictions.
The system does this by taking ground-truth reactants and

invalid reactants generated from the retrosynthesis predictor to
produce input−output pairs (where the output is the ground-
truth reactants), which are then used to train a sequence-to-
sequence transformer model. Concretely, we first use a fully
trained model to generate the top ten candidate precursors
given in a set of target compounds in the training set. Second,
we filter the candidate reactant sets by removing the ground

Figure 3. Example SMILES syntax correction for two invalid predictions generated by transformer-based retrosynthesis predictor. The syntax
corrector fixes the syntax errors and produces the ground-truth reactants.
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truth-reactant sets corresponding to the target molecules.
Third, we construct a training library that consists of a set of
input−output pairs, where the inputs are predicted invalid
reactants, and the outputs are the ground-truth reactants.
Given such a syntax correction data set with input−output
pairs, we can train a new sequence-to-sequence model using
the transformer architecture introduced above and hook it up
to the retrosynthetic reaction predictor. Once trained, we can
input unsatisfactory SMILES strings generated from the
reaction predictor and fix their syntax errors to make more
reasonable predictions. Note that we only retained the top-1
candidate produced by the syntax corrector and replace the
original one.
After correction, we canonicalize all predicted sequences by

reordering the tokens with fixed rules and compared the
predicted candidates with the ground-truth reactants. All
scripts were written in Python (version 3.5), and RDKit was
used for data preprocessing and molecule canonicalization.39

The transformer model was implemented using OpenNMT.40

■ EXPERIMENTS AND RESULTS
We evaluated the self-corrected retrosynthesis predictor
(SCROP) on USPTO-50K data sets with two split methods
(random and clustering) and compared the performance with
other state-of-the-art results (we have repeated their results as
reported in their original papers). Table 1 shows the

quantitative performance of the models on the USPTO-50K
data set when the reaction type is known and unknown,
respectively. When inferring reaction within a specific reaction
class, the SCROP outperforms all baselines in the top-1
recommendation, achieving an exactly matching accuracy of
59.0%. The percentages of correctly predicted reactants by top-
3, top-5, and top-10 are 74.8, 78.1, and 81.1%, respectively.
These results are much higher than those reported in the
previous seq2seq model (37.4% for top-1 and 61.7% for top-
10).
Note that the template-based model of Coley et al.

(similarity) predicted 100 candidates and picked the top-10
as a result. As the SCROP did not rank candidates but was
trained for accurately predicting the top-1 outcome and only
predicted ten candidates, it is not surprising that the similarity-
based method has higher top-5 and top-10 accuracies. Even so,
the SCROP improves the similarity-based method by a margin
of 6.1% in the top-1 accuracy.
A comparison with the results of the original retrosynthesis

predictor (SCROP-noSC) showed that the syntax corrector

leads to consistent increases of top-1 to top-10 accuracies,
ranging from 0.2 to 1.0%. The growth of top-1 and top-3
accuracies is not apparent because only a small part of invalid
predictions was generated in these two stages.
Without prior knowledge of the reaction class (removing the

reaction type tokens in the training procedure), the SCROP
still improves over the similarity-based method by a margin of
6.4 and 5.7% for top-1 and top-3 accuracies and achieves a
comparable result in the top-5 and top-10 suggestions.

Generalization Estimation. To compare the general-
ization ability of these approaches, we further evaluated the
models on the USPTO-50K cluster data set. We retrained both
the seq2seq and similarity-based methods on the USPTO-50K
cluster with the same parameter settings as in the original
papers, except that the generated candidates in the similarity-
based method were set to 10 rather than 100 for a fair
comparison. As shown in Table 2, the SCROP achieved an

order-of-magnitude improvement over baselines with or
without the reaction class from top-1 to top-10 predictions.
Besides, we found that our model performed more stably
compared to the template-based method: the top-1 accuracy of
our model decreases only by 7.5% compared with 16.6% of the
similarity method when planning retrosynthesis for clustered
data set without the knowledge of reaction class. This result
demonstrates that our template-free method has a better
generalization ability than the template-based one when the
training data set has no similar compound to the target
compounds.
We also computed top-10 results for each reaction class on

the USPTO-50K cluster data set. As shown in Table 3,
SCPOR consistently performs better than the seq2seq model
in all 10 reaction classes and betters the similarity model in 6
reaction classes. For example, the 4th reaction class (hetero-
cycle formation) commonly includes the formation of cyclic
structures, resulting in a significant difference between the
reactant SMILES string and the target product SMILES string.
The best performance by SCPOR indicates its ability to induce
better syntactic relationships and capture global chemical
information from the reaction data. The SCPOR also
outperforms the seq2seq and similarity models by a large
margin in the 1st class (heteroatom alkylation and arylation).
The key feature of this reaction class is that the reactions
possibly occur with many different functional groups within
the target molecules. It is hard to identify the accurate reaction
site when the structure of target molecules is not similar to the
one in the knowledge base. As a result, the SCPOR shows
better generalization ability in this reaction type and infers
reactants correctly.

Table 1. Comparison of Top-N Accuracies between the
Baselines and SCROP on USPTO-50K

top-n accuracy (%), n =

data model 1 3 5 10

with reaction class Liu-baseline 35.4 52.3 59.1 65.1
Liu-seq2seq 37.4 52.4 57.0 61.7
similarity 52.9 73.8 81.2 88.1
SCROP-noSC 58.8 74.4 77.5 80.1
SCROP 59.0 74.8 78.1 81.1

without reaction class similarity 37.3 54.7 63.3 74.1
SCROP-noSC 43.3 59.1 64.0 67.0
SCROP 43.7 60.0 65.2 68.7

The bold values are the highest ones among the corresponding
columns.

Table 2. Comparison of Top-N Accuracies between the
Baselines and SCROP on USPTO-50K Cluster

top-n accuracy (%), n =

data model 1 3 5 10

with reaction class seq2seq 25.5 38.7 43.6 49.0
similarity 36.7 58.0 61.4 67.2
SCROP 47.6 63.9 68.1 71.1

without reaction class seq2seq 16.5 28.8 34.0 40.6
similarity 20.7 36.3 43.2 46.9
SCROP 36.2 52.0 57.1 60.9

The bold values are the highest ones among the corresponding
columns.
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Table 4 shows a comparison with the seq2seq model from
Liu et al. on the Jin’s USPTO data set. By achieving 41.5 and

59.2%, respectively, for the top-1 and top-10 accuracies,
SCROP outperforms the state-of-the-art template-free model
in a larger chemical space, demonstrating its scalability. We
note that the similarity method developed by Coley et al.
achieves a top-1 accuracy of 5.1% and top-10 10.2% on the
Jin’s USPTO test set with the pretrained model on the
USPTO-50K. The similarity method was not retrained on Jin’s
USPTO training set because the unreliable atom mappings in
this data set led to many program bugs, also indicating the
limitation of template-based methods.
Evaluation of Syntax Corrector. In Liu’s work,7 incorrect

predictions were summarized as of three types: grammatically
invalid outputs, grammatically valid but chemically unreason-
able, and chemically plausible but not matching to the ground
truth. In this study, we only used the syntax corrector to fix
grammatically invalid outputs since the identification of the
other two types of errors requires the knowledge of ground
truth reactants. As shown in Figure 4, for SCROP, only 0.7% of
the top-1 and 2.3% of the top-10 predictions are grammatically
invalid, which is significantly better than those by the
retrosynthesis predictor (SCROP-noSC) and the seq2seq
model. As an example, Figure 5 shows the predicted synthesis
route of Benoxaprofen, an anti-inflammatory drug, coupling
with the syntax corrector. The model successfully proposes the

ground truth by correcting the original rank 2 prediction,
which is an invalid molecule string. Additionally, the syntax
corrector makes the 3rd ranked prediction more reasonable,
although it is not the correct answer. These results suggest that
the syntax corrector can be used to optimize the invalid
predictions. It provides a new strategy to optimize the
synthesis route when the predicted reactions are proven
wrong. More examples of accurately corrected reactions are
shown in the Supporting Information.

Attention Analysis. To investigate what the model has
learned, we further analyzed the attention weights in our
model. The attention weights provide clues on tokens in the
input string that were considered to be more critical when a
particular symbol in the output string was generated. Figure 6,
for example, shows the top-1 candidate’s attention maps of an
acylation reaction extracted from the SCROP (accurately
predicted) and seq2seq (wrong predicted) models. We
observed that strong weights trend diagonally in SCROP’s
attention map, which constantly aligns with SMILES substrings
that are shared between the input and output. Besides, when
inferring the unseen reaction sites “OH” and “.”, the model can
simultaneously take several noncontinuous tokens into
account. This suggests that the SCROP tries to extract both
the local and global information of the source sequence. In
comparison, the attention map of the seq2seq model fails to
align the substrings of the input−output pair and results in a
wrong prediction.

Limitation. A distinct disadvantage is that the model scores
candidates by only taking into account the overall probability
of the predicted strings. Practically, there are many additional
considerations in synthetic route design, such as process
complexity, expense, productivity, safety, and so on. This is
because the public data sets do not contain additional technical
information except for the reaction strings itself. We would
explore the scoring system by incorporating additional
considerations like similarity, reaction complexity, cost, and
reaction yield to optimize the present evaluation metric.
Another limitation of the model is the multistep reaction. A

possible option would be to recursively decompose the target
compound using the transformer prediction system until the
commercially available building block is obtained. Monte Carlo
tree search could be employed to score the outputs in each
single reaction step.5

Besides, finding the best-performing set of hyperparameters
for a deep neural network as well as the inference procedure is
computationally expensive, as many hyperparameter settings
take tens of hours to train using one GeForce GTX1080Ti
graphics card. For this reason, we use a rough grid search to
identify the final settings in training and inferring procedure.
Better optimization techniques with sufficient equipment may
result in a further increase in accuracy.

Table 3. Model Top-10 Accuracy within Each Class on USPTO-50K Cluster When the Reaction Type is Known

top-10 accuracy (%), reaction class =

model 1 2 3 4 5 6 7 8 9 10

seq2seq 43.9 58.7 29.8 11.9 63.5 54.4 66.0 54.4 43.3 45.8
similarity 56.4 77.0 50.8 52.4 86.2 77.5 73.6 86.2 58.8 85.3
SCROP 71.8 78.9 57.2 56.2 85.1 68.5 79.9 69.6 68.0 68.8

The bold values are the highest ones among the corresponding columns.

Table 4. Top-1, -3, -5, and -10 Accuracies of Different
Models on the Jin’s USPTO Data Set

top-n accuracy (%)

models 1 3 5 10

seq2seq 21.3 33.1 37.0 40.6
SCROP 41.5 53.3 56.7 59.2

The bold values are the highest ones among the corresponding
columns.

Figure 4. Comparison of invalid rates among seq2seq, retrosynthesis
predictor (SCROP-noSC), and self-corrected retrosynthesis predictor
(SCROP) for different beam sizes.
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■ CONCLUSIONS
In this work, we have proposed a novel template-free deep
learning method for chemical retrosynthetic prediction.
Instead of generating candidate precursors by reaction
templates, we employed transformer neural networks to
generate potential candidates by learning the sequential
representation of the reactant−product pairs. Our approach
improved the state of the art in retrosynthesis prediction by
achieving top-1 accuracies of 59.0% on the Liu’s USPTO-50K
data set and 41.5% on the Jin’s data set. At the same time, the
rates of invalid candidate precursors decreased from 12.1 to
0.7% by coupling with a novel neural network-based syntax
checker. When excluding similar targets from the training set,

our method achieved an accuracy of 47.6%, which is 1.7 times
higher than those of other methods. More importantly, our
method is trained in an end-to-end fashion and is free of
chemical rules, and the accuracy will improve automatically
with the increase of the training samples.
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