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Abstract 

Motivation: RNA secondary structure plays a vital role in fundamental cellular processes, and identification of 

RNA secondary structure is a key step to understand RNA functions. Recently, a few experimental methods 

were developed to profile genome-wide RNA secondary structure, i.e. the pairing probability of each 

nucleotide, through high-throughput sequencing techniques. However, these high-throughput methods have low 

precision and can’t cover all nucleotides due to limited sequencing coverage. 

Results: Here we have developed a new method for the prediction of genome-wide RNA secondary structure 

profile from RNA sequence based on the extreme Gradient Boosting technique. The method achieves 

predictions with areas under the receiver operating characteristic curve (AUC) greater than 0.9 on three 

different datasets, and AUC of 0.888 by an independent test on the recently released Zika virus data. These 

AUCs are consistently >5 % greater than the ones by the CROSS method recently developed based on a 

shallow neural network. Further analysis on the 1000 Genome Project data showed that our predicted unpaired 

probabilities are highly correlated (>0.8) with the minor allele frequencies at synonymous, non-synonymous 

mutations, and mutations in untranslated region, which were higher than those generated by RNAplfold. 

Moreover, the prediction over all human mRNA indicated a consistent result with previous observation that 

there is a periodic distribution of unpaired probability on codons. The accurate prediction by our method 

indicates that such model trained on genome-wide experimental data might be an alternative for analytical 

methods. 

Availability: The GRASP is available for academic use at https://github.com/sysu-yanglab/GRASP. 

Contact: xiaon6@mail.sysu.edu.cn or yangyd25@mail.sysu.edu.cn 

Supplementary information: Supplementary data are available online. 
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1 Introduction  

RNA plays an essential role in a wide variety of fundamental cellular 

processes, such as transcription, replication, protein synthesis, and 

regulation of gene expression(Glisovic, et al., 2008; Mortimer, et al., 

2014). The structure of an RNA, including secondary structure and 

tertiary structure, determines its translation and other functions. 

Identifying secondary structure is a key groundwork to know tertiary 

structure and a vital premise to understand the detailed mechanism of 

various biological activities, such as protein-RNA interactions and 

translation process. Therefore, there is a critical need to identify the 

RNA secondary structure by an unbiased and systematic manner. 

While RNA secondary structure can be obtained from a small 

number of RNA tertiary structures experimentally determined by low 

throughput techniques such as Nuclear Magnetic Resonance (NMR), X-

ray Crystallography, and  Cryo-electron microscopy, recently, a few 

experimental techniques have been developed to perform high-

throughput profiling of the RNA structure by exploiting biochemical 

reactions. For example, Parallel Analysis of RNA Structure (PARS) 

distinguishes double- and single-stranded regions using catalytic 

activities of two enzymes, RNase V1 and S1 (able to cut double-stranded 

and single-stranded nucleotides respectively). This technique has been 

successfully applied to the yeast and the human genomes (Kertesz, et al., 

2010; Wan, et al., 2014). Fragmentation sequencing (FragSeq), using 

nuclease P1 to generate fragments, was applied to determine single-

stranded RNA regions in multiple ncRNAs(Underwood, et al., 2010). 

Besides, selective 2′-hydroxyl acylation analyzed by primer extension 

sequencing (SHAPE-Seq) was able to measure the structures of a 

complex pool of RNAs(Lucks, et al., 2011) but the output was found to  

be sensitive to noise(Ouyang, et al., 2013). Another technique based on 

in vivo modification with dimethyl sulphate (DMS), which only reacts to 

adenine and cytosine, are of high quality. But DMS experiments are not 

included here because not all the nucleotide states are provided(Ding, et 

al., 2014; Rouskin, et al., 2014). Recently, two orthogonal high-

throughput sequencing-based techniques, icSHAPE (in vivo click 

selective 2-hydroxyl acylation and profiling experiment) and PARIS 

(psoralen analysis of RNA interactions and structures), have been 

applied to the Zika virus (Zikv) for an accurate estimate of genome-wide 

secondary structure profile(Li, et al., 2018). 

However, high-throughput genomic experiments always have high 

noise and are hard to cover all nucleotides on the RNA due to limited 

sequencing coverage(Ouyang, et al., 2013; Wang, et al., 2009). 

Moreover, the sequencing experiments are of heavy experimental work 

and high costs. Therefore, computational methods are often required. 

Many tools have been developed to obtain locally stable secondary 

structure by minimizing the free energy, such as ViennaRNA (Bernhart, 

et al., 2006; Lorenz, et al., 2011). Nonetheless, these methods are not 

accurate enough due to a lack of a precise free energy criterion(Mathews, 

et al., 1999), and the searching of the global minima is an NP-hard 

problem (Lyngso and Pedersen, 2000). To be even worse, the secondary 

structure with the lowest free energy is not always the actual one 

(Hofacker, 2014; Seetin and Mathews, 2012; Ye, et al., 2005). Recently, 

with the accumulation of experimental genomic data, a CROSS method 

was developed to predict RNA secondary structural profile by a shallow 

artificial neural network with only one hidden layer (Ponti, et al., 2017). 

The neural network is well known to have strong self-learning and non-

linear fitting ability, but it is easy to fall into local optimal solution and 

has slow convergence with small training data (Jin-yue and Bao-ling, 

2012; Roberts, 2003).  

Recently, the eXtreme Gradient Boosting (XGBoost) technique was 

proposed by aggregating multiple weak learners to obtain a combined 

and strong learner (Chen and Guestrin, 2016). Meanwhile, as a kind of 

gradient boosting models, its implementation of parallel processing 

enables a fast model training compared to many traditional models, and 

can be deployed to high-performance platform for large-scale parallel 

computing. The technique was found to outperform other machine 

learning and deep learning techniques in many competitions such as 

Kaggle and KDDCup (Chen and Guestrin, 2016; Dhaliwal, et al., 2018), 

especially for datasets with sparse matrix. It has been successfully 

applied in  many bioinformatic studies, such as miRNA-disease 

association(Chen, et al., 2018), protein translocation(Mendik, et al., 

2019), protein-protein interactions(Basit, et al., 2018), and DNA 

methylation(Zou, et al., 2018).  

In this study, we developed a new method for end-to-end prediction 

of the Genome-wide RNA Secondary Structure Profile (GRASP) from 

RNA sequence by using the XGBoost technique. The method achieves 

area under the receiver operating characteristic curve (AUC) values 

greater than 0.9 by cross-validations on three different datasets (high-

throughput PARS yeast and human datasets, and high-quality dataset 

from NMR/X-ray structures), and AUC of 0.888 on an independent test 

of the ZIKA virus dataset. The comparison showed that our method 

consistently outperformed the CROSS method trained by using shallow 

neural networks. Moreover, the predictive power of our model was also 

supported by a correlation between predicted structure profile and minor 

allele frequencies (MAF) of genetic variants, as well as the finding that 

both ends of coding region have less structure. 

2 Materials and Methods 

Datasets 

For validation of our method, we employed three training datasets 

(PARS-Yeast, PARS-Human, and SS-PDB) as also used in the previous 

study (Ponti, et al., 2017). Since their training and test sets weren’t 

available, we followed the same steps as reported in the study to generate 

the datasets. In addition, an independent test set was compiled from the 

recently released Zika virus (Zikv) genomic data (Li, et al., 2018). Table 

1 show the details of three training datasets and the independent test set.  

The PARS-Yeast and PARS-Human datasets were derived from the 

experimentally measured RNA structural profiles probed by the PARS 

technique on the S.cerevisiae (Kertesz, et al., 2010) and Homo sapiens 

(GEO: GSE50676) (Wan, et al., 2014). The experimental data contain 

around 3200 and more than 35,000 non-redundant transcripts, 

respectively. In these two datasets, the ratio between double and single 

stranded frequencies was calculated as a score (PARS score) for each 

nucleotide. In order to obtain nucleotides with the most reliable 

measurements, we selected nucleotides with the highest scores on each 

transcript as double-stranded nucleotides (positives), and the same 

number with the lowest scores as the single-stranded nucleotides 
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(negatives). Around the selected nucleotides, fragments were prepared to 

include 18 nucleotides from its upstream and downstream, leading to a 

length of 37 for each sample. As fragments from different positions or 

transcripts might have the same sequences but different scores or labels, 

we kept one representative fragment set as the consistent state of 

secondary structure if more than 90% of the fragments were in the same 

state, single- or double-stranded, otherwise the fragments were all 

removed. Here, we selected top and bottom five nucleotides in each 

transcript for S.cerevisiae and two for Homo sapiens in order to keep 

close numbers for the two species. Finally, we obtained 15341 positives 

nucleotides (each represented by a fragment) and 15340 negatives for the 

S.cerevisiae, and 29454 positives and 31720 negatives for the Homo 

sapiens, namely PARS-Yeast and PARS-Human. 

SS-PDB: We downloaded 1341 secondary structures of RNA from the 

RNAstrand (Andronescu, et al., 2008), a curated database from the three-

dimensional structures of RNA that were determined by X-ray or NMR 

and deposited in the Protein Data Bank (PDB).  By removing redundant 

sequences with sequence identity greater than 75% calculated by CD-

hit(Li and Godzik, 2006), 202 sequences remained. The sequences 

include totally 46694 nucleotides, with 30, 680 positives (double 

stranded) and 16, 014 negatives (single stranded), namly SS-PDB. 

SS-ZIKV: We downloaded the experimental scores of secondary 

structure profiles for Zika virus from previous study (Li, et al., 2018). As 

suggested by the previous study(Ponti, et al., 2017), we selected 

nucleotides with raw score of 0 and 1 as double- and single-stranded, 

respectively. Similar to the previous way for processing PARS dataset, 

we merged identical fragments with a consistent secondary structure 

state (occurring among >90% of the fragments), and removed all 

identical fragments if they are divergent (either state occurring <90%). 

Finally, we kept 1627 double-stranded fragments (positives), and 1618 

single-stranded fragments (negatives), namely SS-ZIKV. For comparison 

with CROSS, the sequences were submitted to online server 

(http://service.tartaglialab.com/new_submission/cross) to obtain the 

predictions. 

The first three training datasets were used for both cross-tests and self-

tests. In the cross-test, one dataset was employed for training model, and 

the other two datasets were used to evaluate the performance. In the self-

test, the method was separately tested on each dataset using the five-fold 

cross-validation. The five-fold cross validation test was conducted by 

randomly splitting the dataset into five subsets, where four subsets were 

used for training a model, and the remained was used for validation. This 

process repeated for five times so that each fold was tested once. All 

results were collected to measure the overall performance for the dataset. 

The SS-ZIKV was used as independent test. 

Features extraction and encoding of RNA sequences 

We employed a window-based strategy for features extraction of 

secondary structure status. For a given nucleotide, d nucleotides both 

upstream and downstream of it were selected as its features. Here, we 

defined a window size l, where l = 2d+1. So the window size decided 

the number of features to represent a nucleotide. At the beginning or end 

of the sequence, it was padded with the letter N if the length of upstream 

or downstream was less than d. After feature extraction, each nucleotide 

was encoded with the one-hot notation(Figure 1): A = (1, 0, 0, 0), C = (0, 

1, 0, 0), G = (0, 0, 1, 0), U = (0, 0, 0, 1), and N = (0, 0, 0, 0). Thus, the 

prediction of each nucleotide has an input of 4 × 𝑙 matrix. By testing 

different window sizes, we finally chosen l = 37 for a balance of 

performance and training time. 

Training of GRASP 

GRASP was trained by using XGBoost, which is an ensemble method to 

generate k Classification and Regression Trees (CART). The input of the 

CART includes a vector with size of 4𝑙 that is flattened from the feature 

matrix (4 × 𝑙). The training procedure of XGBoost can be outlined as 

follows: 

1) Sort values in each feature and scan the best splitting point, the 

values that gives the lowest gain; 

2) Select the feature with the best splitting point that optimizes the 

objective function; 

3) Repeat the splitting in the above two steps until the maximum tree 

depth (set hyper-parameter) is reached; 

4) Make assignment to the leaves with prediction score and prune the 

nodes with negative gains according to a bottom-up order; 

5) Continue repeating the above steps for k times (k trees); 

Table 1. The details of the three training datasets and an independent dataset 

 
Transcript 

Sequences 

Positives 

nucleotides 

Negatives 

nucleotides 

Total 

nucleotides 
Note 

PARS-

Yeast 
3196 15341 15340 30681 

All transcripts from transcriptome were 

selected to generate dataset. 

PARS-

Human 
36531 29454 31720 61174 

28120 transcripts with experiment scores of 

36531 from the human transcriptome were 

selected to generate dataset. 

SS-PDB 202 30680 16014 46694 
202 transcripts were selected by homology 

screening to generate dataset. 

SS-ZIKV 1 1627 1618 3245 
All RNA of Zika Virus was selected to 

generate dataset 
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We used the implementation provided in the XGBoost Python library 

that was optimized for distributed systems. Here, we selected 𝑙 = 37 

after comparison (explain in detail in discussion section). We used grid 

search in Scikit-learn framework (Pedregosa, et al., 2011) to find the 

optimal parameters. The range of parameters set up in the training 

process is shown in Table 2. Moreover, the optimized XGBoost models 

were trained on a 16 core CPU to speed up the learning process. 

Parameter optimization and evaluation of the models were performed 

using 5-fold cross-validation.  

Figure 1 shows the flowchart for the model training. First, the 

individual features extracted from RNA sequence were encoded and 

flatten. Then the models were parallelly trained by grid searching 

strategy with 5-fold cross-validation. The sub-model with the best AUC 

in validation was selected. Finally, the independent test was performed 

by the remained two datasets not involved in the training. 

 

Evaluation Metrics 

The performance of the model was measured by the area under the 

receiver-operating characteristic curve (AUC), accuracy (ACC), 

precision, recall value and F1-Score score. The relevant formulas for 

these measurements are shown as below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
(2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

 

, where TP is true positives, the number of paired nucleotides that 

are predicted to be paired. Similarly, TN, FP and FN are the numbers of 

true negative, false positive and false negative, respectively. 

 

The 1000-Genome dataset 

The 1000 Genomes Phase 3 VCF file was downloaded from Ensembl 

annotated by ANNOVAR (Wang, et al., 2010), which leads to single 

nucleotide variations (SNVs) along with their minor allele frequencies 

(MAF), including 223,693 cases in 5′ untranslated regions (UTR), 

899,976 in 3′ UTR, 16,847 in stop-gain region, 704,643 nonsynonymous 

and 427,077 synonymous regions. MAF is the frequency of the least 

common allele in a population. For each category, SNVs were sorted and 

equally separated into 50 bins according to predicted score for secondary 

structure (or predicted ASA, accessible surface area, by RNA-snap) at 

their mutation positions. Log (Predicted values) and log (MAF) were 

averaged, as well as Pearson’s correlation coefficients were calculated 

based on the average values(Yang, et al., 2017). 

 

Human genome data 

We downloaded 89,732 transcripts sequences in the human genome from 

Gencode version v26, which referred to Ensembl v88. Genes without 5′ 

UTR, coding sequence (CDS), or 3′ UTR were removed, which led to 

60876 transcripts from 18527 genes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The flowchart of GRASP method 

Table 2. The hyper-parameters used for the model training. 

Hyper-parameters Description Value set 

max_depth 
Maximum depth of a tree. The larger the value, the easier to learn 

the local specificity but also easier to overfit. 
{3, 6, 9, 12} 

subsample 
Subsample ratio of the training instances. Smaller value leads to 

faster training speed but the risk of underfit. 
{0.7, 1} 

colsample_bytree A parameter for subsampling of columns. {0.7, 1} 

learning_rate 
Step size shrinkage used in update to prevents overfitting. The 

smaller the value, the easier to underfit. 
{0.05, 0.1} 

reg_lambda L2 regularization term on weights. {0.05, 0.1, 0.5} 

reg_alpha L1 regularization term on weights. {0.05, 0.1, 0.5} 

n_estimators The number of base learners, with the same effect as learning_rate. {500, 1000, 2000} 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa534/5848407 by Institute of M

echanics, C
AS user on 04 June 2020



Accurate Prediction of Genome-wide RNA Secondary Structure Profile Based on Extreme Gradient Boosting 

Comparison to RNAplfold 

For genome-scale studies, we compared the GRASP to secondary 

structure profile prediction software RNAplfold from the package 

ViennaRNA 2.1.9 (Lorenz et al. 2011). By using command “RNAplfold 

-u 1 -W 37” with a window size of 37, we obtained the unpaired 

probability for each nucleotide, which could be converted to paired 

probability by using “1 – unpaired probability”.  

3 Results 

3.1 Prediction of RNA secondary structure profile  

As shown in Table 3, our method achieved AUC values of 0.942, 0.967, 

and 0.901 by the five-fold cross-validation on the PARS-Human, PARS-

Yeast, and SS-PDB, respectively. At a threshold of 0.5, the respective 

accuracy values are 0.871, 0.901, and 0.844 for the prediction of 

secondary structure profile (nucleotides to be paired or not). The 

balanced measures by F1-score are all above 0.85, where the precision 

and recall values are all above 0.86.  

In order to make stricter tests, we performed the cross-tests between 

three datasets, where model was trained on one dataset, and tested on the 

other two datasets. As shown in Table 4, the model trained by PARS-

Human achieved an AUC essentially the same as the one achieved on the 

PARS-Yeast by 5-fold cross validation (0.94 vs 0.94). Meanwhile, a 

close AUC value was also achieved on the model trained by PARS-

Yeast (0.93 vs 0.97). The similar performance by self-tests and cross-

tests on the PARS-Human and PARS-Yeast demonstrated the robustness 

of our method on different genomes. Differently, when these two models 

are applied to the SS-PDB dataset, the models trained by PARS-Human 

and PARS-Yeast achieved close but significantly lower AUC values 

(0.65 and 0.63). This is likely due to the difference in two experimental 

techniques. On the other hand, the analytical method, RNAplfold 

achieved lower AUC values with 0.76, 0.86, and 0.67 for PARS-Human, 

PARS-Yeast, and SS-PDB, respectively (Table 4). Notably, for PARS-

Human, when we selected top and bottom 5 nucleotides instead of two as 

mentioned in the dataset, the results were similar (Table S3, Table S4).    

When compared to the reported results by the CROSS, a method 

trained by a shallow neural network, our method performs consistently 

better in all cross-tests datasets: the AUCs achieved by our method are 

4.4~10% better than those by CROSS with an average of 6.7% (Table 

S2). The differences in datasets should have little impact, as the 

improvements are essentially the same as the one (5.7%) in the 

independent test on the SS-ZIKV dataset by using CROSS’s online 

server (see section 3.3). Our method achieved slightly lower AUCs in the 

self-tests (the results of cross-validation).  

3.2 Performance of consensus model  

Since three training datasets represent different genomes or experimental 

techniques, it is interesting to know the performance by combining all 

datasets. We randomly selected 90% samples from each dataset, and put 

them together to train a consensus model. The remaining 10% of the 

three datasets were used as independent test sets. As shown in the Table 

5, the consensus model achieved close to the highest AUC values among 

three independents. The average AUC is 0.927, significantly higher than 

the 0.846, 0.840, and 0.812 by models trained only on the PARS-Human, 

PARS-Yeast and SS-PDB training sets, respectively. Besides, it is 

important to note that, for the test set of SS-PDB data, the consensus 

model outperforms the models only trained on human or yeast data with 

increasements of AUC from less than 0.65 to nearly 0.90. These 

improvements indicate that the consensus model could eliminate the 

difference between two experimental techniques and is better for general 

prediction of RNA secondary structures. Moreover, we also assessed the 

performances on tRNA molecules. By randomly selecting 30% (6 chains) 

from the totally 21 tRNA chains in the SS-PDB as the test set, we re-

trained the consensus model with the same hyper-parameters as above 

using the remaining data in the training set. The re-trained consensus 

model achieved an AUC of 0.887 on the 6 tRNA chains, higher than the 

0.823 and 0.759 by RNAplfold and CROSS, respectively.  

3.3 Independent test on SS-ZIKV  

We further tested our consensus model on the recently released 

secondary structure of the Zika virus measured by the icSHAPE 

technique(Li, et al., 2018). Though the training of our consensus model 

didn’t include dataset by such technique, the model made a prediction 

with an AUC of 0.888 (Figure 2) on the SS-ZIKV dataset. By 

comparison, though the CROSS (global) method has included two 

Table 4. Comparisons of performances on three datasets  

by GRASP and RNAplfold 

 GRASP RNAplfold 

train 

test (all) 

PARS-

Human 

PARS-

Yeast 
SS-PDB ------- 

PARS-Human 0.94 0.93 0.75 0.76 

PARS-Yeast 0.94 0.97 0.76 0.86 

PDB 0.65 0.63 0.90 0.67 

 

Table 5. Comparison of AUC values on the independent tests consi- 

sting of 10% samples by models trained with 90% samples of each 

dataset or their combination (Consensus). 

train 

test (10%) 

Consensus 

model 

PARS-

Human 

PARS

-Yeast 
SS-PDB 

PARS-Human 0.940 0.945 0.925 0.754 

PARS-Yeast 0.960 0.945 0.967 0.773 

SS-PDB 0.886 0.648 0.628 0.908 

Average 0.927 0.846 0.840 0.812 

 

 

Table 3. The performance of GRASP on three training datasets by 

 the 5-fold cross validation. 

 PARS-Human PARS-Yeast SS-PDB 

AUC 0.942±0.001 0.967±0.002 0.901±0.004 

ACC 0.871±0.002 0.901±0.003 0.844±0.005 

Precision 0.874±0.004 0.905±0.006 0.848±0.005 

Recall 0.854±0.005 0.906±0.004 0.929±0.003 

F1-score 0.864±0.002 0.906±0.003 0.887±0.004 
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datasets by SHAPE and icSHAPE experimental techniques in their 

model training, their final model reached an AUC of 0.840 that is 5.7% 

lower than our method. The difference of two AUC values was 

significant (P-value<1E-6) according to the statistical test(Hanley and 

McNeil, 1982; Lowry). The RNAplfold achieved the lowest AUC of 

0.799 that is 11% lower than the one by our method.    

3.4 Relation of predicted secondary structure with the 

MAF of genetic variants 

To demonstrate the biological significance of our predicted secondary 

structure profiles, we examined whether the predicted paired states of 

nucleotides were related with the minor allele frequencies (MAF) of 

genetic variants observed from the 1000 Genomes Project for healthy 

individuals(Huang, et al., 2012).  

As shown in Fig 3A, the unpaired probabilities (i.e. 1 - paired probability) 

predicted by GRASP showed high correlations with MAF for most types 

of mutations, with the highest Pearson’s correlation coefficient (PCC) of 

0.901 from synonymous mutations. This is probably because 

synonymous mutations that don’t change expressed proteins affect 

biological functions mainly through the change of RNA secondary 

structure. The correlation is especially clear for the paired states (left 

region in Fig 3B) as mutations of paired nucleotides mostly destroy the 

paired states and likely cause diseases. Relatively, the points close to 0 

(unpaired states) are less related as mutations of unpaired nucleotides are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Positive association between minor allele frequencies (MAF) of genetic variants and predicted secondary structures or ASA at 

mutation sites. (A) Pearson’s correlation coefficients between the average MAF of single-nucleotide variations and unpaired probabilities by 

RNAplfold, unpaired probabilities by GRASP, and ASA(accessible surface area) by RNAsnap-seq for synonymous, nonsynonymous, and stop-

gain mutations at the coding region, mutations at 3′ and 5′ untranslated regions, respectively. For synonymous mutations at the coding region, 

the relation of the average MAF from the 1000 Genomes Project with the average of (B) the unpaired probability predicted by GRASP, (C) the 

unpaired probability by RNAplfold, and (D) predicted ASA by RNAsnap-seq. The average was calculated over bins sorted by predicted values. 

PCC values are as labelled. 
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Figure 2. Receiver Operating Characteristic (ROC) curves 

reveal test performances of three models on Zikv RNA genomic 

prediction. GRASP consensus model performs the best among 

all models.   
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less probable to change the paired states. This was confirmed by the PCC 

of -0.925 when using the unpaired probabilities through mutated 

sequences. When using the changes of the unpaired probabilities, there is 

still a strong negative correlation, but the correlation is slightly weaker 

(PCC=-0.853). This is consistent with our previous findings that the 

prediction of overall states is still limited to reflecting the differences by 

mutations(Chen, et al., 2019; Yang, et al., 2017). The predictions by 

RNAplfold achieved a PCC of 0.794 that’s greater than the PCC of 0.473 

with the predicted ASA(accessible surface area) from the RNAsnap-seq, 

consistent with the previous study (Yang, et al., 2017). This ranking 

order is consistent with most types of mutations, non-synonymous 

mutations, stop-gain mutations, and mutations occurring in the 3’UTR 

(untranslated region). (Figure 3 and Figure S1-S3 in supplemental file). 

 

3.5 Predicted secondary structure plays as a key signal 

in translation 

To further explore the potential function of the secondary structure in 

translation process, we explored distribution of paired probability in 

coding area of mRNAs. As shown in Figure 4, the paired probability 

predicted by GRASP reveals a three-nucleotide periodicity across coding 

regions. In each codon, the first nucleotide is always least structured and 

the second one is more structured than the other two, similar to 

previously observation(Kertesz, et al., 2010; Wan, et al., 2014). This 

vibration frequency indicates there is an unambiguous definition of 

codon boundaries during translation process. The results of RNAplfold 

also shows periodicity, but not so obvious. Moreover, it was shown that 

there was a sudden drop and then fast rise in paired probability near the 

start codons as well as stop codons. The curve of GRASP forms a deeper 

bottom than that of RNAplfold (Figure 4). Namely, both the starting site 

and ending site tend to be unpaired. This is consistent with the previous 

finding  that over 80% of the start codon are free of secondary structure 

by analyzing mRNAs of prokaryotic and eukaryotic(Ganoza and Louis, 

1994), as well as free energy preference at the 5' and 3' ends of 

siRNA(Shabalina, et al., 2006). This kind of enrichment of unpaired 

nucleotides can help to start the protein translation process. Additionally, 

the transition of secondary structure over the boundary is likely an 

important signal for a correct recognition of coding regions. 

4 Discussion 

In this study, we have developed a new method GRASP to predict 

RNA secondary structure from sequence based on XGBoost. To train the 

model, we used sequence information around a given nucleotide. We 

found that a window size of 37 nucleotides provided the best 

performance, as shown in Table S1 and Figure S4.  For example, when 

model trained by PARS-Human was applied to PARS-Yeast, the AUC 

values increased from 0.932 to 0.944 when the window size augments to 

37, and also increased from 0.913 to 0.926 when model trained by 

PARS-Yeast was applied to PARS-Human. Taking the average AUCs of 

cross-tests as concerned(Figure S4), among three datasets, the values 

increased significantly when window size increased from 13 to 37, but 

the growth stopped and a decrease trend appeared after 37. Ideally, the 

window size should cover the entire sequence of an RNA chain so that a 

machine-learning method can learn potential interactions between all 

nucleotides (local or nonlocal interactions). However, the growth in the 

number of features is easy to cause over-training due to limited number 

of training samples, and will also significantly increase the 

computational costs during model training and prediction. As a balance 

performance and computational costs, we chosen a window size of 37.  

We observed that the cross-tests between two PARS datasets 

achieved AUCs above 0.9, close to their respective self-test 

performances. Nonetheless, models trained by these datasets had a much 

lower performance on the SS-PDB dataset with AUCs around 0.65. 

Similarly, the model trained by SS-PDB did not perform well on 

predictions of two PARS datasets with AUCs around 0.75, much lower 

than the self-test result on SS-PDB. The divergences might result from 

the different techniques to produce the datasets. SS-PDB dataset was 

derived from 3D structure determined by X-ray or NMR, reflecting an 

in-vitro structural states, whereas PARS measured the paired or unpaired 

states of nucleotides by their reactions with chemical reactants. As a 

compromise, our consensus model trained on both types of data achieved 

the best performance for all tests. Though the consensus model only 

included experimental data by PARS technique and PDB data, it 

achieved the best results on the independent test set of the Zika virus 

RNA genomics measured by icSHAPE technique, indicating the 

robustness of our model. 

GRASP was further validated by using 2.2 million genetic variants 

found in the 1000 Genomes Project. Previous studies assumed that the 

higher populated genetic variants on average, the less association with 

diseases(Hu and Ng, 2012; Zhao, et al., 2013). This expectation 

effectively supported for the predicted disease susceptibility of genetic 

variants(Yang, et al., 2017). Therefore, if mutation-induced disruption of 

functional RNA structures is one of the potential trigger of 

disorders(Halvorsen, et al., 2010), it is expected that predicted 

probability scores of structures at mutation sites would have a positive 

correlations with average MAF values, similar to predicted RNA solvent 

accessibility(Zhao, et al., 2013).The expectation was proved by strong 

correlation between unpaired nucleotides and higher allele frequencies 

by a PCC > 0.8 in the mutation sites located in coding region, 3′ UTR. 

The relative weak correlation for 5’UTR and stop-gain mutations by both 

 

 

 

 

 

 

 

 

 

Figure 4. GRASP shows clearer patterns at different regions in 

transcripts than RNAplfold. It can be seen apparently that the 

average paired probability at coding sequence (CDS) is periodical 

distribution in unit of a codon, which is distinct from the pattern at 

untranslated regions (UTR). The result of GRASP shows a clearer 

vibration frequency than RNAplfold. At the two ends of CDS, 

GRASP also predicts a more significant and deeper bottom than 

RNAplfold. The results demonstrate the better biological utility of 

our model. 
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GRASP and RNAplfold suggests that these kinds of mutations had 

different functional mechanism in genomes. Moreover, it could be found 

that the PCCs between MAF and GRASP were stronger than the 

relations between MAF and RNAplfold, which suggests that the 

machine-based method by training on high-throughput experimental data 

was better to characterize the genomes than analytical methods fitted for 

small data. With the decreasing costs in sequencing technique, more and 

more genomic data will be obtained, and machine learning models can 

be constructed to remove experimental noise and to extend into regions 

with low or no experimental coverage. Besides, the stronger correlation 

to MAF than predicted ASA also suggests that mutations in paired 

regions are more disruptive than those in buried RNA regions (the 

smaller predicted ASA, the more buried). 

The positive results by correlating with MAF of genetic variants in 

1000-Genomes Project encouraged us to make genome-scale application 

of GRASP to more than 18000 genes for identifying potential 

mechanism under translation process. It was found that the average 

paired probability shows periodical distribution in the codons of CDS. 

The 2nd nucleotides in codon always had higher paired probability in 

average than the 1st and 3rd nucleotides. This periodic fluctuation didn’t 

appear in the 3’UTR or 5’UTR. Moreover, near the start codons and end 

codons, the cliff-like curves of paired probability indicate that both ends 

of coding region are less structured, which is consistent with the need to 

interact with the ribosome for translation. In order to prevent the possible 

artifact caused by the selective window size, we also ran RNAplfold with 

the default window size (70), and found that the patterns remained highly 

similar (Figure S5). These results further suggested that our predictions 

help to unearth more biologically meaningful results, which might 

support downstream analysis such as protein function, protein–ligand 

interactions(Chen, et al., 2019) . 

Our method has been trained based on XGBoost, which supports 

parallel computing that is advantageous for post-deployment on the 

super computer for large-scale calculation and public use. And the 

overall performance by the method indicates that fitting to the high 

throughput experimental data might be a substitution for analytical 

methods. 

GRASP is now freely available for academic use at GitHub: 

https://github.com/sysu-yanglab/GRASP. 
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