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Abstract

Biomedical knowledge graphs (KGs), which can help with the understanding of complex biological systems and pathologies,

have begun to play a critical role in medical practice and research. However, challenges remain in their embedding and use

due to their complex nature and the specific demands of their construction. Existing studies often suffer from problems

such as sparse and noisy datasets, insufficient modeling methods and non-uniform evaluation metrics. In this work, we

established a comprehensive KG system for the biomedical field in an attempt to bridge the gap. Here, we introduced

PharmKG, a multi-relational, attributed biomedical KG, composed of more than 500 000 individual interconnections between

genes, drugs and diseases, with 29 relation types over a vocabulary of ∼8000 disambiguated entities. Each entity in PharmKG

is attached with heterogeneous, domain-specific information obtained from multi-omics data, i.e. gene expression,

chemical structure and disease word embedding, while preserving the semantic and biomedical features. For baselines, we

offered nine state-of-the-art KG embedding (KGE) approaches and a new biological, intuitive, graph neural network-based

KGE method that uses a combination of both global network structure and heterogeneous domain features. Based on the

proposed benchmark, we conducted extensive experiments to assess these KGE models using multiple evaluation metrics.
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Finally, we discussed our observations across various downstream biological tasks and provide insights and guidelines for

how to use a KG in biomedicine. We hope that the unprecedented quality and diversity of PharmKG will lead to advances in

biomedical KG construction, embedding and application.

Key words: knowledge graph; knowledge graph embedding; computational prediction model; drug repositioning;

Alzheimer’s disease

Introduction

The complex interplay between biomedical entities—i.e. genes,

chemicals and diseases—has long been intriguing to biomedical

researchers. Understanding these interconnections is the key to

illuminating the underlying mechanisms behind different bio-

logical functions (e.g. agonism, metabolism, mutation, etc.) and

can thus greatly benefit various biomedical studies, such as drug

repositioning [1], adverse drug reaction analysis [2], proteomics

data analysis [3], etc. This has encouraged the development of

numerous physical and computational strategies to evaluate,

analyze and infer different types of these associations.

For a decade, basic networks such as undirected and uni-

relational graphs were used to model intricate interactions in

biomedical systems [4–8]. Despite the impressive performances

of these models, these networks failed to capture the semantics

within different types of relationships between biomedical enti-

ties. For example, drug–protein interactions modeled with basic

networks cannot distinguish between different kinds of interac-

tions such as inhibition, activation, binding, etc. Because of this,

many recentworks have since switched to usingmulti-relational

networks, i.e. knowledge graphs (KGs), where KG embedding

(KGE) [9–12] approaches were utilized to map graphs into a

low-dimensional space while maximally preserving its topo-

logical properties. As such, downstream tasks such as relation

prediction, clustering and visualization can be done by typical

non-network-based models [13–15]. Although existing methods

show the capacity of processing KGs and demonstrate great

promises, the usage of KGs in biomedical applications has suf-

fered from the lack of standard evaluation benchmarks and

expressly designed biomedical KGE models [16, 17].

Unlike other areas where data are clean and well-structured,

knowledge bases derived from the biomedical domain are usu-

ally sparse, redundant and incomplete. Though many manually

curated knowledge bases such as PharmGKB [18],OMIM [19],CTD

[20] andDrugBank [21] offer high-quality data sources, they often

record only simple connections between entity pairs while los-

ing the essential mechanisms behind the associations, making

it challenging to construct multi-relational graphs. Meanwhile,

many recently developed, preliminary biomedical KGs such as

Bio2RDF [22], OpenBiolink [23] and Triple [24], contain either a

significant number of metadata relations or trivial biomedical

entities that can interfere with the performance of KGE algo-

rithms [17]. Therefore, it is necessary to construct a comprehen-

sive, high-quality benchmark.

In recent years, KGE models have experienced rapid develop-

ments that have allowed them to make accurate predictions of

relations [10, 12, 25–27]. Advances in methodology are both eval-

uated and steered by some established general-domain bench-

marks, such as the FB15K benchmark derived from Freebase

and the WN18 benchmark derived from WordNet [9]. Unfortu-

nately,most of the existingmethodologies struggle to reflect the

domain-specific properties of heterogeneous biomedical KGs

due to either their well-structured knowledge networks (FB15K)

or hierarchical taxonomies (WN18). In fact, biomedical KGs often

combine richly structured ontological hierarchies with complex

interconnections, thus making it hard to predict relations based

on simple or straightforward rules. Likewise, biomedical KGs

usually contain abundant non-topological domain information,

e.g. gene expression [28], chemical structure and disease descrip-

tion [29], requiring a deep combination of network embedding

methods and feature learning techniques to make full use of the

information.

Another problem worth noting is that the existing studies

often benchmark proposed methods on disjointed dataset col-

lections for specific downstream tasks, such as drug repurposing

[7, 30, 31] and adverse drug reactions [32, 33]. As such, the

evaluation metrics and setting are not standardized across dif-

ferent works,making it a challenge to judge whether a proposed

method does, in fact, improve performance.

In this study,we attempted to bridge the gap by establishing a

comprehensiveKG system,PharmKG, for the biomedical field.As

shown in Figure 1, the PharmKG is a multi-relational, attributed

biomedical KG composed of more than 500 000 individual inter-

connections between genes, drugs and diseases of 29 relation

types, annotated by a vocabulary of ∼8000 disambiguated enti-

ties. Each entity in the PharmKG is attached with heteroge-

neous, domain-specific information obtained from multi-omics

data, including gene expression, chemical structure and disease

word embedding, while preserving both semantic and biomed-

ical information. For baselines, we offer nine state-of-the-art

embedding approaches and a novel, biological, intuitive graph

neural network-based KGE method that integrates both global

network structure and heterogeneous domain features.We have

also conducted extensive experimentswith various state-of-the-

art KGE models in the same evaluation standard using the pro-

posed benchmark. Furthermore, we discussed our observations

across various downstream biological tasks and provided some

insights and guidelines for how to use KGs in for biomedicine

tasks and applications.

In summary, our contributions are 3-fold as follows.

1. Establishment of a dedicated, high-quality and trustworthy

benchmark optimized for evaluating multi-relation predic-

tion methods in large attributed biomedical KGs. By inte-

grating six professional public resources and text-mined

knowledge bases, this dedicated biomedical KG, PharmKG,

contains thousands of nodes containing genes, chemical

compounds and diseases, connected by a set of semantic

relationships derived from the abstracts of biomedical lit-

erature. Each entity in PharmKG is labeled with domain-

specific information, preserving semantic and biomedical

features of the data.

2. Introduction of a new baseline through a novel biological

intuitive graph neural network-based KGE method meant

to alleviate issues found in existing methods and to capture

heterogeneous information embedded in complex, biomed-

ical KGs.
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Figure 1. Pipeline for PharmKG construction,modeling and applications. PharmKG depends on biological knowledge bases and includes a larger set of biomedical facts

derived from the research literature to fill in missing semantics. Each entity in PharmKG was labeled with domain-specific information, persevering semantic and

biomedical features. Low-dimensional entity and relation representations are first learned from PharmKG by KGE approaches and then used to build specific systems

for hypothesis generation and mechanism analysis.

3. Validation of the PharmKG through extensive experiments

with various KGEmodels usingmultiple evaluationmetrics.

One external biomedical KG was also used to compare the

quality of the benchmark and to evaluate KGEmethods sys-

tematically. We discussed our observations across various

downstream biological tasks and applications to provide

insights and guidelines for how to use PharmKG in the

biomedical domain.

The rest of the paper is organized as follows: Background

Section—A review of the most relevant works on methods to

construct and embed biomedical KGs. We also discuss flaws in

current embedding methods and in KG dataset construction.

Materials Section—A detailed construction and analysis of

PharmKG. Modeling and application of PharmKG Section—An

exploration of the difficulties encountered in the PharmKG

dataset upon using several baselines and a discussion of

the predictive and analytical capabilities of KGE models on

constructed KG datasets novel and possible novel solutions.

Downstream apllications Section—Analysis and discussion of

the downstream applications of PharmaKG.

Background

In this section, we introduced the related works in two areas.

First, we briefly reviewed current progress in the biomedical

KG field. Second, we summarized current approaches for KG

embedding.

KGs in biomedical research

KGs are multi-relational, directed graphs in which nodes repre-

sent entities and edges represent their relations. Starting from a

number of high-quality, manually curated biomedicine knowl-

edge bases such as TTD [34], PharmGKB [18], OMIM [19] and

DrugBank [21], knowledge network-based studies have rapidly

advanced to utilizing larger datasets for the next generation

of network analysis algorithms. For more explorations of drug

knowledge bases, we refer readers to an extensive survey [35].

However, most of them only identify the existence of a relation-

ship between entity pairs without containing specific semantic

relation types, thus cannot be treated as a KG in the strict sense

[16].

The first major biomedical KGwork was published by Belleau

et al. [22], where semantic web technologies were applied to

convert publicly available bioinformatics databases into RDF for-

mats. From the processed RDF file, the biomedical triplets (entity,

relation and entity) could be subsequently obtained to construct

a biomedical KG.Unfortunately, this kind of KG contains a signif-

icant number of metadata relations that can interfere with the

performance of link prediction algorithms, and special care was

needed to exclude trivially inferable statements from the test set

[23].

Since then, efforts have been focused on constructing task-

oriented KGs and applying them to downstream biomedical

applications, such as drug repositioning [15, 24, 31], with only

a few KGs focused on the construction of annotated, clarified

biomedical knowledge networks. For example, Percha et al. [36]

compiled a roughKG known as the Global Network of Biomedical

Relationships (GNBR) from large-scale biomedical literaturewith

unsupervised techniques and used it to generate drug repur-

posing hypotheses [31]. Though this work first provided specific

themes for each kind of interaction between two entities, it

suffered fromname ambiguity and a high false-positive rate, and

additionally no benchmark dataset was provided. Himmelstein

et al. [37] constructed an integrative network encoding data from

29 public resources and provided a basic model to study drug

repurposing. Alshahrani [16] and Breit et al. [23] also bench-

marked large-scale KGs by integrating several public databases

with annotation by Bio2RDF.While these works are ideologically

consistent with the larger applications of KGs, they are restricted

to ambiguous relationship types and uncommon entities that

include a large number of trivial knowledge. Furthermore, the

embedding methods used in these works treated the entities

as simple homogenous instances, ignoring the heterogeneous

biological information embedded in the entities themselves.
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Table 1. A comparison between some of the existing biological KGs in terms of the properties and coverage of different types of biological
entities. The abbreviation M represents manually curated data, A represents automated curated data and MA represents the combination of
these two kinds of sources

Category Name Properties Coverage

construction Semantic relation Graph structure Domain feature Ontology Chemical Disease Gene

Knowledge

base

TTD [33] M √ √ √

PharmGKB [17] MA √ √ √

SIDER [34], A √

OMIM [18] M √ √ √

Drugbank [20] M √ √

CTD [19] A √ √ √ √

KG Hetionet [35] M √ √ √ √ √ √

GNBR [36] A √ √ √ √

OpenBioLINK [22] A √ √ √ √ √

Triple [23] M √ √ √ √ √

Polypharm [31] MA √ √ √ √

Biokeen [37] A √ √ √ √

PharmKG MA √ √ √ √ √ √ √

To overcome these limitations, PharmKG depends on recent

versions of biological knowledge bases and includes a broader

set of biomedical facts derived from the research literature to

fulfill the missing semantics in the knowledge bases. To deal

with synonymy and ambiguity, each entity in the PharmKG was

allocated manually curated synonymous tables of chemicals,

genes and diseases. More detailed cleaning processes are shown

inMaterials Section. Table 1 summarizes the specializations and

the different types of covered biological entities of a set of

popular biological knowledge bases.

KG embedding methods

The key issue with embedding KGs is learning to create

a low-dimensional distributed representations of entities

and relations. Once learned, representations can then be

processed using various scoring functions to give probability

scores for all triplets. As many survey articles [17, 27] have

reviewed KGE approaches on general benchmarking settings,

we provide only a brief description of several commonly used

KGE methods that have been adopted as baselines in this work.

Generally, these methods can be split into the following three

categories.

Distance-based scoring function

The key idea of the translational distance-based models is that,

for each triplet (h, r, t), the relation r is treated as a translation

from head entity h to tail entity t, namely h + r≃ t in vector

space. Bordes et al. [9] first proposed TransE by assuming that

the added embedding of h and r should be close to the one of t. A

drawback of TransE is that it struggles withN-to-1, 1-to-N andN-

to-N structures. To address this issue, TransR [38] extends TransE

by introducing separate latent spaces for entities and relations.

These translational models are fast, require few parameters, but

result in less expressive KGEs.

Semantic matching scoring function

The semantic matching models exploit similarity-based energy

functions by matching latent semantics of entities and relations

in the embedding spaces. RESCAL [11] was proposed based

on the idea that entities are similar if connected to similar

entities via similar relations. The similarity was calculated

through a bilinear model by associating each relation r

with a matrix Mr. Later, DistMult [12] was proposed by

simplifying the bilinear formulation through using diagonal

matrix Mr to model relation R. complex [39] further generalized

DistMult by using complex embeddings and Hermitian dot

products.

Neural network-based scoring function

Deep learning has been increasingly popular as these methods

can outperform common machine learning methods. Recently,

two convolutional neural network-based models have been pro-

posed for relation prediction, namely ConvE [10] and ConvKB

[40]. They both concatenate embeddings of entities and relations

into a 2D feature map and use convolution operations to extract

information. These models are parameter-efficient but learn

each triplet independently without taking global relationships

between the triplets into account. A graph-based neural net-

work R-GCN [41] was introduced for learning connectivity struc-

ture under an encoder–decoder framework. It applies a graph

convolution operation to the neighborhood of each entity and

assigns them equal weights without considering heterogeneous

information.

Though the abovementioned methods have impressive and

expressive performances in general homogeneous KG datasets,

they cannot capture the structured ontological hierarchies

and heterogeneous features embedded in biomedical KGs. To

this end, we have developed a novel heterogeneous graph

attention neural network (HRGAT), which makes uses of not

only the global information surrounding the target triplet

but also the rich heterogeneous node attributes obtained

from multi-omics resources. Detailed information about this

model is presented in Modeling and application of PharmKG

Section.

Table 2 summarizes the scoring functions of a set of

popular KG embedding methods. In this study, we focus on

embedding methods that operate on multi-relational graphs, as

mentioned in the introduction of the paper. We did not include

uni-relational KGE methods (i.e. DeepWalk [42], Node2Vec [43],

etc.), and other methods specifically designed for a single

dataset (Triple [24], Dragon [32], etc.).
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Table 2. A summary of used KG embedding models

Category Model Scoring function

Transitional distance TransE ||h + r − t||L1/L2

TransR −||Mrh + r − Mrt||22
Semantic matching Distmult hTdiag(Mr)t

ComplEx Re(< h, r, t >)

RESCAL hTMrt

Neural network ConvE σ (W(σ ([Mh,Mt]) ∗ ω))t

ConvKB concat(σ ([h, r, t]) ∗ ω))w

RGCN hTdiag(Mr)t

HRGAT concat(σ ([h, r, t]) ∗ ω))w

Materials

PharmKG was built from publicly available databases and text-

mined knowledge bases and naturally combined the domain

knowledge embedding of entities from different resources.

In this section, we illustrate the details of our constructions

and results. We also provide a detailed data analysis of

our KG.

Construction of PharmKG

Integration of public knowledge bases

Our KG was constructed based on six public databases that

offered high-quality structured information, including OMIM

[19], DrugBank [21], PharmGKB [18], Therapeutic Target Database

(TTD) [34], SIDER [44] and HumanNet [45]. These databases pro-

vided raw data files in various formats, including CSV, XML,

TXT and TSV. The raw data files were parsed based on the

data structure and then organized into structured interactions

between entity pairs (e.g. gene–chemical interaction, chemical–

disease interaction). To integrate these databases, we unified

the gene name with the Entrez Gene ID as it was commonly

used in the OMIM, DrugBank, PharmGKB and HumanNet. As

the disease and chemical names are poorly standardized, we

unified the names according to the Medical Subject Headings

(MeSH) [46] and PubChem, respectively, andmapped names used

in other databases accordingly. The unified entity names in

our KG prevented the duplicate entities due to synonyms in

different resources. It should be noted that the relation infor-

mation extracted from these public resources is undirected and

non-attributed. This preliminary network was referred to as the

Interaction Network.

Combining Interaction Network with GNBR

To obtain an information-enriched KG, we further combined the

Interaction Network with GNBR [36]. GNBR contains millions

of noisy triplets extracted from large-scale biomedical litera-

ture with unsupervised techniques. We first performed entity

disambiguation for GNBR with similar procedures described in

the last section so that we can map millions of relationships

obtained from GNBR to the Interaction Network. During the

fusion process, the trivial entities that did not exist in the Inter-

action Network were removed to ensure the quality of the KG.

We noticed that in most cases, relationships from GNBR could

not be found in the interaction network obtained from pub-

lic databases, which means that GNBR can largely enrich the

coverage of public knowledge bases. The semantic themes in

GNBR were inherited as the final relation types in the inte-

grated KG.Herein,most of the interactions from public resources

could be assigned directionality and attribute according to the

theme of GNBR. We referred to this preliminary KG as the Raw

PharmKG.

Entity filtering and heterogenous feature extraction

To obtain a high-quality benchmark, the Raw PharmKG was

further polished by filtering trivial entities and attaching initial

features for each entity using domain resources. Concretely, we

selected 1497 FDA-approved drugs with molecular masses lower

than 900 Da and extracted their chemical features, including

extended-connectivity fingerprints [47] and physiochemical fea-

tures as generated by Rdkit [48]. Then, we focused on the dis-

eases above the fifth hierarchical levels in MeSH tree structure.

Sincemost of the symptoms have only a few relationships, thou-

sands of symptoms were merged into the corresponding fifth-

level diseases according to theMeSH tree structure.We extracted

disease semantic features from the biomedical language repre-

sentations by applying pre-trained word embeddings obtained

from BioBERT [29]. As for genes, we selected those expressive

genes in BioGPS [49] and Connectivity Map [50] that are often

studied by researchers, resulting in 4759 geneswith their expres-

sion levels fromdifferent tissue cell types.The expressionmatrix

constituted the feature embeddings of those genes. To eliminate

the redundancy and reduce the dimensionality, we performed

principal component analysis [51] on the features of the three

types of entities and utilized the top 100 eigenvectors as their

feature representation.

Finally, PharmKG contained a total of 29 types of 500 958

relationships between 7603 entities of 3 types.

Data analysis

As shown in Table 3, the 7603 entities consist of 1497 FDA-

approved chemicals, 1347 complex diseases and 4759 genes.

The 500 958 relationships were grouped into 29 types in 4

top-level categories including ‘Interactions’, ‘Disease-Gene’,

‘Disease-Chemical’ and ‘Chemical-Gene’ based on the entities

they link. Figure 2 shows the semantic descriptions of all

relationships and the percentage of each relationship in the

categories. For example, the ‘Ecg’ relationship in the chemical-

gene category occupies 2.28% (11, 421/500, 958) in PharmKG,

which describes chemicals’ effects on the gene expression

level.

As shown in Figure 2B, each category has a variety of

relationship types and the relationships within them are

integrated from curated biomedical knowledge. The ‘interaction’

category made up 59.78%, the largest percentage of total

relations since it involves many relationships between two

identical entities. For example, gene–gene interaction has

six different sub relations, including ‘Q’, ‘Ra’, ‘Rg’, ‘Bgg’,

‘Egg’ and ‘GG’, which conveys differences in meaning. The

categories associated with chemical entities are relatively

few, as only a small library of the more important and

informative 1497 FDA-approved drug molecules were included.

Note that the relation types in PharmKG are slightly dif-

ferent from the ones in GNBR as several new types were

added, such as ‘GG’, ‘CC’ in the ‘Interaction’ category, and

some semantically similar relationships were merged based

on a clustering dendrogram to alleviate the low precision

caused by unsupervised learning techniques. More detailed

information of this PharmKG was shown in Tables S1 and

S2.
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Table 3. The type-wise distribution of the entities in PharmKG and their original data-source(s)

Type Drugbank TTD OMIM PharmGKB GNBR PharmKG

Chemical 1, 208 1, 347 – 615 1, 442 1, 497

Disease – 399 987 419 1, 001 1, 347

Gene 1, 166 741 2, 320 1, 674 4716 4, 759

Figure 2. Summary of (A) relationship themes and (B) their distributions in PharmKG.

Modeling and application of PharmKG

In this section, we explore the difficulty of the PharmKG dataset

for the relation prediction task and its usages for drug repur-

posing and target identification with several baselines and the

proposed novel method.

Baselines

We used Pykeen v1 [52], an open-source Python package for

KGE, including TransE, TransR, Distmult, ComplEx and RESCAL.

We also implemented several neural network-based methods,

including ConvE, ConvKB and RGCN. The details and limitations

of these models have been introduced in Background Section.

Heterogeneous graph attention neural network

For our method, we propose a heterogeneous graph attention

network (HRGAT) that obtains the optimally weighted combina-

tion of the biomedical triplet embedding bymaking efficient use

of information shared across regions in the graph. As shown in

Figure 3, the architecture of the model is built as an extension

of the GAT [53] with attentive knowledge embedding [54] for the

biomedical KG. More specifically, it allows the encoder−decoder

paradigm to be trained in an end-to-end fashion.We formulated

the encoding and decoding part of the HRGAT in the following

sections.

Encoder

The encoder layers are input with two featurematrices. The first

one is the entity feature matrix H ∈ R
Ne×T, where Ne is the total

number of entities and T is the feature dimension of each entity

embedding. Compared with the random homogenous initial

embedding adopted in previous works [23, 24, 37], we used het-

erogeneous feature embedding obtained from the entity itself,

as introduced in Construction of PharmKG Section. The second

represents the embeddings of relations and is represented by the

matrix G ∈ R
Nr×Q , where Nr is the total number of relations and
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Figure 3. The overall framework of HRGAT. Themodel first captures the global network structure and heterogeneous domain features by several graph attention neural

network blocks and then scores the triple with ConvKB.

Q is the feature dimension of each relation embedding.We used

TransE to initialize the relation embeddings based on previous

work [54].

This task aims to obtain the new embeddings of each entity

ei and relation rk. The embedding for a triplet tijk = (ei, rk, ej) was

learned as

hijk = W1

[

hi ‖ gk ‖ hj
]

,

where gk, hi and hj are the initial feature embeddings of the

relation rkand entities ei and ej, respectively, andW1 is the linear

transformation matrix. Following [53], the normalized attention

value of each triplet was learned by

cijk = Relu
(

W2hijk
)

aijk = softmaxjk

(

cijk
)

=
exp

(

cijk
)

∑

n∈Ni

∑

r∈Rin exp (cinr)
,

where W2 represents the corresponding linear transformation,

Ni denotes the neighbors set of entity ei and Rin is the relations

set linking entity ei and en. Attention weights for each adjacent

triplet are the importance for a source entity ei. The updated

embedding of the entity ei is the sum of each adjacent triplet

representation weighted by their attention values as shown in

h′
i = σ





∑

j∈Ni

∑

k∈Rij

aijkhijk



 ,

where σis the sigmoid activation function and aijkis the normal-

ized attention coefficient of triplet tijk.

In addition, multi-head attention was introduced to stabilize

the learning process and to encapsulatemore information about

the neighborhood [53]. To alleviate the computing cost, the out-

put embedding in the final layer is calculated using averaging

instead of a concatenation operation by

ĥ′
i = σ





1

M

M
∑

m=1

∑

j∈Ni

∑

k∈Rij

amijkh
m
ijk



 ,

where M is the number of attention head.

For the update of relation embedding G, we also performed a

linear transformation with a weight matrix W3

Ĝ = W3G.

Finally, to avoid the loss of initial biological features, a widely

used shortcut strategy was employed [55] by adding initial entity

embeddingHto the output hidden entity embeddingHfas shown

in

Ĥ = W4H
f + H.

Training objective

Following an idea from Bordes et al. [9], we optimized hinge loss

by a similar translational scoring function as

Lossencoder =
∑

tij∈T

∑

t′
ij
∈T′

max
{

dt′
ij
− dtij + γ , 0

}

,

where γ >0 is a margin hyperparameter, T and T’ are the sets of

valid and invalid triplets, respectively, and dtij = |hi+gk−hj| is the
distance for the triplet tijk = (ei, rk, ej) with relation rk considered

as a translation fromhead entity ei to tail entity ej, namely ei+rk =
ej in embedding space.

Decoder

To extract the latent features inside the triplets and to analyze

the global embedding properties of a triplet across each dimen-

sion, ConvKB [40] was used as a decoder. The scoring function

with multiple feature maps can be written formally as

f
(

tkij

)

= concat
(

σ (
[

hi, gk,hj
])

∗ ω ))W,

where ω represents convolutional filter, ‘∗’ is a convolution oper-

ator andW is a transformationmatrix used to calculate the final

score for a given triplet tkij.

The model is trained using soft-margin loss as

Lossdecoder =
∑

tk
ij
∈T∪T′

log
(

1 + exp
(

vtk
ij
.f

(

tkij

)))

+ 1

2
‖W‖22,

where vtk
ij

=
{

1, tkij ∈ T

− 1, tkij ∈ T′ .

Evaluation protocols

The most impressive ability of KGs is their ability to deduce

new relations between biomedical entity pairs. For evaluation,

we used ranking procedures as suggested by the KG community

[9, 12]. For each test triplet, the head hi is removed and replaced
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by every other entity ei ′ ∈ E\hi in turn.We first computed a score

for each triplet and then sorted these scores in ascending order

to get the rank of the correct triplet (h, r, t). We report the mean

reciprocal rank (MRR) and the proportion of correct entities in the

top N ranks (Hits@N) for N =1, 3, 10 and 100. One-sample t-tests

were implemented to compare the HRGAT with the strongest

baseline and P-values<0.05 indicate that the improvements of

HRGAT over the strongest baseline were statistically significant.

These ranking metrics proved to be suitable for the general

evaluation of standard KGE methods but proved to be deficient

in evaluating incomplete KGs, where so-called ‘corrupt triplets’

were more likely to be valid. For downstream tasks such as

drug repurposing and target identification, we also introduced

two widely used metrics: the areas under the receiver operat-

ing characteristic (AUROC) curve and the precision-recall curve

(AUPRC).

We divided the triplets into a training set, a validation set

and a test set in an 8:1:1 manner. For KGE baselines, we set the

dimensionality of the initial embedding to 100. All the baselines

were trained for 100–1000 epochs usingmargin ranking loss with

learning rate [0.005, 0.01, 0.1] and batch size [256, 512, 1024].

Other hyper-parameters for each approach were set at their

default settings, as recommended by the Pykeen package [52].

We implemented rough grid search for parameter optimization

as we found that the model performance was not sensitive to

reasonable settings.

In order to provide a comprehensive comparison of these

baselines and the new method, we further made evaluations

on Hetionet, a manually curated biomedical KG dataset [37].

The dataset originally contained 47 031 nodes of 11 types

and 2 250 197 relationships of 24 types. To keep the data

consistent, we kept only the gene, chemical and disease entities

and the interconnections between them. The pruned Hetionet

included 22 634 nodes of 3 types and 562 106 relationships of 13

types. Note that one portion of the relation types in Hetionet

is naturally directed and asymmetric, such as Compound–

treats–Disease (CtD) and Compound–downregulates–Gene

(CdG), while several other relations are undirected such as

Gene–interacts–Gene (GiG) and Gene–covaries–Gene (GcG).

To match the paradigm of commonly used KG embedding

methods, the undirected relations were treated as directed ones

according to the original order of two entities in the Hetionet

list. The statistical information of this dataset was shown in

Figures S2B and S3.

Evaluation of KGs with different embedding methods

We tested different embedding methods on PharmKG and

the pruned Hetionet. As shown in Table 4, the HRGAT model

outperforms all other models in terms of Hit@N and MRR

on two benchmarking datasets. Generally, compared with

traditional techniques (e.g. Distmult, RESCAL and RGCN), the

proposed embedding methods have largely improved the

relation reasoning performance. For example, ConvKB achieves

a 31.2% improvement in terms of Hit@100 value compared

with RGCN. ComplEx obtains a 9.1% increment in the Hit@100

when compared with RESCAL. Considering the heterogeneous

representation and multi-hop neighborhood features, our

HRGAT method outperforms the best neural network baseline

ConvKB by 4.8% (MRR), 2.3% (Hit@1), 10.6% (Hit@10) and 10.1%

(Hit@100). It also improves over ComplEx with 4.7% on MRR

(P-value=2.42e−7) and 9.7% on Hit@100 (P-value=4.19e−5).

These results demonstrate that HRGAT is more effective and

could be used on biological relation prediction tasks to improve

prediction performance. Furthermore,we conducted an ablation

study by omitting heterogeneous features. The ablated model

(HRGAT-w/o) was found to cause a significant drop in the results

by decreasing the MRR and Hit 100 with 0.016 (P-value=1.84e−5)

and 6.3% (P-value=2.36e−4), respectively. These significant

decreases suggest that heterogeneous features play a pivotal

role in relation prediction.

A similar trend seen in evaluating the test Heitonet

suggests that positive results derive from the method, and

not from the dataset: our HRGAT-w/o is 4.0% better than the

ComplEx (P-value=2.34e−8) and 1.6% better than ConvKB (P-

value=9.13e−6) on MRR. HRGAT was not shown as the Hetionet

does not have heterogeneous features for the structure of

chemical entities and expression information of gene entities.

We further found that the results of the embedding

algorithms in PharmKG were generally higher than those of

Hetionet. Compared with Hetionet, PharmKG has 10-fold more

hierarchical disease entities and disease-related edge types

that can form more relations between genes and drugs, which

facilitate the modeling of the KG. Additionally, the distribution

of different associations in Hetionet is extremely unbalanced,

where gene–gene interactions make up more than 85% of the

total links, while disease–chemical interactions occupy less

than 0.3%.

Evaluation of PharmKG’s capacity for drug repurposing
and target identification

Drug repositioning and target identification are the two most

widely used applications of biological networks. To assess

the ability of our model to carry out these two tasks, we

calculated areas under receiver operating characteristic (ROC)

and precision-recall (PR) curves for the task-related relationships

based on the predicted scores given in Evaluation protocols

Section.We retrieved the most drug repurposing-relevant types,

‘C’ (Cell inhibits), ‘T’ (Treatment) and ‘J’ (Role in pathogenesis) in

the Drug Disease themes and the most target identification-

relevant types, ‘Te’ (Possible therapeutic effect), ‘D’ (Drug

targets), ‘X’ (Overexpression in disease) and ‘ML’ (Biomarkers)

in the Disease Gene themes. As shown in Figure 4, our HRGAT

model performs well in discriminating positive and negative

pairs in drug repurposing tasks, achieving an AUROC of 0.912

and an AUPR of 0.911, significantly outperforming that of

ConvKB (AUROC=0.807, AUPR=0.813), TransE (AUROC=0.788,

AUPR=0.774) and ComplEx (AUROC=0.794, AUPR=0.781). The

ablated model (HRGAT-w/o) was found to cause a significant

drop in the results by decreasing the AUC and AUPR by 2.7 and

1.9%, respectively. Similarly, we found that HRGAT achieved the

best performance in target identification tasks. The superior

performances of HRGAT likely result from the full use of

global information available in KGs and domain-knowledge-

associated embedding. Therefore, the implementation of net-

work embedding on such heterogeneous frameworks effectively

integrates chemical, genomic, pharmacological and phenotypic

information and, hence, is useful for providing accurate drug

repositioning predictions and provides new insights into target

identifications.

Pharmacological interpretation of HRGAT

It is interesting to know whether HRGAT can capture the

biomedical semantics embedded in relationships. To this aim,

we took the initial embedding hijk and final embedding ĥijk of

triplets in different relations and embed these hidden vector
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Table 4. Overall relation prediction performance on the two compiled biomedical KGs

Category Model PharmKG HetioNet

Hits@N Hits@N

MRR N = 1 N = 3 N = 10 N =100 MRR N =1 N =3 N =10 N =100

Distance-

based

TransE 0.091 0.034 0.092 0.198 0.524 0.027 0.002 0.022 0.070 0.300

TransR 0.075 0.030 0.071 0.155 0.510 0.040 0.013 0.036 0.088 0.317

semantic

matching

RESCAL 0.064 0.023 0.057 0.122 0.413 0.032 0.017 0.031 0.059 0.231

ComplEx 0.107 0.046 0.110 0.225 0.552 0.070 0.029 0.069 0.148 0.382

Distmult 0.063 0.024 0.058 0.133 0.461 0.037 0.012 0.034 0.087 0.286

Neural

network

ConvE 0.086 0.038 0.087 0.169 0.425 0.075 0.032 0.071 0.155 0.408

ConvKB 0.106 0.052 0.107 0.209 0.548 0.094 0.045 0.090 0.186 0.442

RGCN 0.067 0.027 0.062 0.139 0.236 0.030 0.011 0.021 0.052 0.209

Proposed HRGAT–w/o 0.138 0.068 0.148 0.275 0.586 0.110 0.055 0.105 0.210 0.483

HRGAT 0.154 0.075 0.172 0.315 0.649 – – – – –

Figure 4. A summary of the results of an evaluation of the predictive accuracy of KG embedding models compared with other models on two biological inference tasks:

drug repurposing (A) and target identification (B). The reported results represent the score percentage of the area under the ROC and PR curves for the left and right

side bars, respectively.

representation into a 2D space using t-SNE [56]. As shown in

Figure 5, the initial feature of triplets in different relationships is

disentangled because of disjointed random embeddings of the

relation r, while relations in the same theme cluster together

after the global structure information and heterogeneous

features embedded in the biomedical KG are learned. The results

demonstrate that our model is capable of learning biomedical

semantic information embedded in such relationships.
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Figure 5. Visualization of the triples in different themes in the 2D space using the t-SNE package for the (A) initial triplet embedding and (B) final embedding following

learning by HRAGT.

Downstream applications

To further validate the efficacies of our model, we conducted

case studies to infer novel drug repurposing and target identi-

fication candidates for two types of neurodegenerative diseases,

Alzheimer’s disease (AD) and Parkinson’s disease (PD). AD and

PD are the most common neurodegenerative diseases in the

world, and both are currently without a cure; PharmKGmay help

to propelmechanistic exploration and the identification of novel

drug candidates [57–60]. We performed a detailed survey from

various evidence such as literature evidence and validations

of the prediction using three categories: (i) published evidence,

where there is literature evidence indicating the use of the drug

or target to influence human disease; (ii) potential associations,

where the drug or target may produce different physiological

effects than those expected and (iii) unknown/no effect, where

there is no literature evidence to support the drug-relation-

disease or target-relation-disease combination. We focused on

predicted relationships that do not exist in our training, valida-

tion and test sets.

Case study of drug repositioning: computationally
identifying approved drugs for AD and PD

In accordance with the learned model, we selected the top-

scored candidates to evaluate the validity of the prediction.

Supplementary Table S3 shows the top 10 highest-scoring novel

drug repurposing candidates for AD with the canonical name

of the drug, predicted relation, disease name, predicted score,

evidence category and PMID (literature reference supporting

interpretation). In total, among the top 10 predicted drug candi-

dates, four drugs (40%) are validated for treating AD by literature

evidence and five candidates (50%) have a potential relationship

with AD. For example, enalapril is a drug used to reduce high

blood pressure and to prevent or treat heart failure [61]. This

prediction was supported by a previous study indicating that

enalapril pretreatment could be used as a therapeutic approach

for Alzheimer’s patients [62]. Likewise, imatinib, marketed as

Gleevec, has been proven effective for gastrointestinal stromal

tumors [63] and might also be considered and may have the

basis to be a potential novel therapy for AD [64]. Desipramine

and isoprenaline were predicted to play a role in pathogenesis,

which were also supported by literature evidence [65–67]. Tri-

fluoperazine, while predicted to be linked, has not been pre-

viously reported to be associated with AD. We noticed that

predicted relations might be inconsistent with actual ones. For

instance, etoposide was predicted to be associated by inhibiting

cell growth but recent studies show its ability to induce cellular

senescence that may have negative implications in brain aging

and neurodegenerative conditions [68].

Table S4 lists the top 10 drug repurposing candidates for PD,

among which four candidates (40% success rate) were validated

by various evidence from literature and another four candidates

(40%) were proved to be associated. For example, atomoxetine

is a medication approved for the treatment of attention deficit

hyperactivity disorder (ADHD) [69]. Here, atomoxetine is the

top predicted candidate for repurposing to treat PD, a potential

that is supported by previous studies [70–72]. Methylphenidate,

a stimulant medication also used to treat ADHD along with

narcolepsy, was predicted by our model to be a potential treat-

ment for PD, which is evidenced in the literature [73–75]. Two

predicted candidates (everolimus and neostigmine) have not

been reported to associate with PD.

Case study of target identification: computationally
identified druggable targets for AD and PD

Table S5 lists the top 10 highest-scoring candidate targets for

AD. We found that 8 of 10 candidates (80% success rate) were

found to be associated with AD and supported by evidence from

the literature. For instance, the top predicted target, FASLG (Fas

ligand), is a protein belonging to the tumor necrosis factor (TNF)

family. FASLG was found to be associated with neurotic degen-

eration in the AD brain and to participate in β-amyloid-induced

neuronal death [76]. Likewise, CYP2E1, predicted by our model
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Figure 6. Mechanism analysis of four top-scoring triplets for (A) drug repurposing and (B) target identification in case study sections, respectively. Each figure shows

the 10 most supportive paths in the KG.

to be involved in increased disease risk, is a broadly expressed

enzyme involved in the metabolism of xenobiotics in the brain

and liver and has also been found to generate reactive oxygen

species, capable of contributing to many diseases, including AD

[77]. Furthermore, SERPINC1, a protein encoded by the gene

antithrombin III, was predicted by our model as a target for AD,

with its involvement supported by previous studies [78].

For PD (Table S6), seven targets (70% hit rate) were validated

by various evidence. For example, our model found that muta-

tions in PSEN1 and PSEN2may be risk factors for PD, a theory that

is supported by several studies [79, 80]. Furthermore, Sirtuin 2 is

an enzyme encoded by the SIRT2 gene; inhibition of SIRT2 has

been shown to be protective in PD [81, 82]. Our model suggests

that improper regulation of the Sirtuin 2 genemay be responsible

for its links to the disease. In addition, TNFRSF1A, a receptor that

binds tumor necrosis factor-alpha (TNF-α), was predicted by our

model to be a target implicated in PD pathogenesis, a prediction

supported by evidence in the literature [83–85].

In summary, PharmKG offers a useful tool to identify poten-

tial drugs for repurposing and to suggest novel targets for dis-

eases, such as in AD and PD.

KG visualization of top-predicted candidates

Compared with a basic network, another advantage of KGs

is their interpretability. To exemplify this, we selected four

top-predicted drug repositioning and target identification

candidates to analyze their mechanism in PharmKG. Figure 6

shows the top paths supporting the generated hypotheses.

By depicting the 10 shortest paths in the KG, we can see

that our model is learning information from neighbor nodes

when inferring new relationships. For instance, the CYP2D6

gene, a member of the cytochrome P450 gene family, is

believed to associate with PD because of its highly polymorphic

expression [86, 87], and atomoxetine is traditionally believed

to be metabolized through the cytochrome P450 2D6 (CYP2D6)

enzyme pathway in its treatment of ADHD [88]. Therefore, our

method hypothesizes that atomoxetine is a potential drug for

PD, as shown in Figure 6. This suggests the ability of our method

to capture heterogeneous information in the KG and repurpose

it to infer potential therapeutic drugs and novel targets for

diseases.

Discussion and conclusion

In this paper, a novel biomedical KG, PharmKG, was presented.

We provided a multi-relational attributed dataset containing

over 500 000 interconnections between gene, drug and disease,

including 29 relation types annotatedwith a vocabulary of∼8000

high-quality entities. We demonstrated the wide variety of

biomedical information embedded in our dataset. We have also

introduced a novel neural network-based embedding approach,
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HRGAT, to alleviate the drawbacks of existing methods and to

optimize the capture of heterogeneous information embedded

in biomedical KGs. We demonstrated the high performance

of HRGAT on PharmKG and Hetionet and highlight its ability

to make drug repurposing predictions and to generate new

potential drug targets. We further validate HRGAT’s ability

to identify valid connections by finding supporting evidence

using independent sources and by identifying the meta-

pathways in the original KG that help explain the prediction

results.

Compared with recently published works that either used

basic networks [8, 30] or existing biomedical knowledge bases

[37, 89] to generate hypotheses, PharmKG integrated both the

curated knowledge bases and semantic triplets derived from

the abstracts of vast biomedical literature. It is a semantically

enriched KG benchmark that can be applied in not only drug

repurposing and target identification but also protein–protein

interaction prediction, adverse drug reaction analysis, etc. Vari-

ous hypotheses can be generated by targeting different relational

semantics embedded in PharmKG. Moreover, it can be used as a

high-quality training corpus to perform relation extraction tasks.

By integration with the disease-specific context, PharmKG can

be further utilized to accelerate drug repurposing and mech-

anism analysis for emerging human diseases, such as COVID-

19 [90]. We believe that the dataset and benchmark described

in this work constitute an important step for biomedical KG

construction, modeling and application. Based on PharmKG, a

wide range of current and upcoming relation prediction models

can be evaluated and utilized for biomedical cases. Pharma-

ceutical scientists and biologists could also benefit from this

by analyzing the positions of interested entities and top-scored

hypotheses.

There are several potential limitations of PharmKG under the

current deep learning framework. First of all, although we made

efforts to assemble large-scale, literally reported interactions

from a number of publicly available databases and literature, the

quality and integrity of themetadata cannot be fully assured. For

example, due to the inherent lack of negative drug-disease pairs

in the publicly available databases and published literature, it is

challenging to obtain truly negative samples in our KG. Secondly,

the final version of PharmKGdoes not have large-scale of entities

compared with previous KGs [23, 37]. We noticed that there are

180 000 entities with 1 million relations in the raw version that

kept trivial entities like less studied compounds and genes (we

also released the raw version in the Github). However, over 90%

vertices contain less than two links in this version. By such

KG, the assessment of models might be biased due to the large

number ofmissing relations between the less studied entities.As

this study emphasized on building a high-quality benchmark to

assess KGmodels,we havemade a trade-off between the quality

and the scale of entities. It will be a long-term effort for us to

increase the scale while maintaining the quality of PharmKG. In

the future, we will further expand PharmKG by merging multi-

omics sources, i.e. transcriptomics and clinical data, and explore

novel automated relation extraction methods. In addition, we

would like to exploit the inductive-based knowledge embedding

method, alleviating the problems caused by the addition of new

information.

Availability and implementation

Thedatasets and code are available at available onhttps://github.

com/MindRank-Biotech/PharmKG.

Key Points

• We established a dedicated, high-quality and highly

challenging benchmark optimized for the task of

evaluating multi-relation pre-diction methods in

large attributed biomedical knowledge graphs (KGs).

By integrating six representative public resources

and text-mined knowledge bases, this biomedical-

attributed KG, PharmKG, contains thousands of

nodes of gene, chemical com-pound and disease,

connected by a set of semantic relationships derived

from the abstracts of biomedical literature. Each

entity in the PharmKG was labeled with domain-

specific information, persevering the semantic and

biomedical features.
• A novel biological intuitive graph neural network-

based KGE method is introduced as a new baseline

to alleviate the drawbacks of existing methods and to

capture the heterogeneous information embedded in

the biomedical knowledge.
• We conduct extensive experiments on the PharmKG

with various KGE models using various evaluation

metrics. We discuss our observations across various

down-stream biological tasks to provide insights and

guidelines for how to use the KG in the biomedi-

cal area.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-

formatics.
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