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4 ABSTRACT: Accurately predicting the impact of point mutation on
5 protein stability has crucial roles in protein design and engineering. In this
6 study, we proposed a novel method (BoostDDG) to predict stability
7 changes upon point mutations from protein sequences based on the extreme
8 gradient boosting. We extracted features comprehensively from evolutional
9 information and predicted structures and performed feature selection by a
10 strategy of sequential forward selection. The features and parameters were
11 optimized by homologue-based cross-validation to avoid overfitting. Finally,
12 we found that 14 features from six groups led to the highest Pearson
13 correlation coefficient (PCC) of 0.535, which is consistent with the 0.540 on
14 an independent test. Our method was indicated to consistently outperform
15 other sequence-based methods on three precompiled test sets, and 7363
16 variants on two proteins (PTEN and TPMT). These results highlighted that
17 BoostDDG is a powerful tool for predicting stability changes upon point
18 mutations from protein sequences.

1. INTRODUCTION
19 Nonsynonymous single nucleotide polymorphisms (SNPs)
20 play fundamental roles in protein evolution mainly through
21 inducing changes in amino acid sequences.1 Previous studies2,3

22 suggest that nonsynonymous SNP mutations can be disease-
23 associated and detrimental to human health by affecting
24 structural stabilities of proteins. Even a single residue
25 substitution, namely, point mutation, may have serious effects
26 on a protein’s stability and consequently result in changes in
27 the protein’s structure and function. Therefore, accurate
28 prediction of mutation-caused protein stability changes
29 (ΔΔG) is essential for guiding directed protein evolution
30 and for understanding the relationship between protein
31 variants and diseases.
32 Over the years, efforts were devoted to developing methods
33 to evaluate the stability changes upon point mutations.
34 Traditional mutagenesis studies can accurately quantify the
35 thermodynamic effects of mutations via biological experiments.
36 However, these experimental efforts usually take considerable
37 time and cost, especially for large-scale mutations. With the
38 rapid accumulation of experimentally measured data for both
39 proteins and mutants in the ProTherm database,4 computa-
40 tional methods were greatly improved in recent years.
41 Predictive stability effects of mutations can be obtained from
42 a protein’s sequence or tertiary structure information, and the
43 majority of current methods are structure-based, including
44 several energy-based approaches and machine learning
45 methods. Physical energy functions compute ΔΔG by
46 simulating atomic force fields in a protein structure5 and

47may not be applied to large-scale data sets due to high
48computational requirements. Methods using statistical energy
49functions calculate the conditional probabilities of certain
50residues or atoms in different structural environments. For
51instance, SDM6 characterizes free energy changes with the
52frequency of environment-specific amino acid substitutions,
53and CUPSAT7 utilizes the knowledge-based potentials in a
54given structure. Empirical potential approaches derive a linear
55combination of different energy functions, whose weights are
56fitted to experimental data.8,9 Machine learning methods can
57learn complex nonlinear models from sequence or structural
58features, and various algorithms have been used to generate
59predictions, such as support vector machine,10−13 decision
60tree,14 artificial Neural network,15,16 and collaborative filtering
61model.8

62One limitation of structure-based approaches is that the
63tertiary structure of the target protein is often unknown; in
64fact, less than 0.2% of the proteins in UniProt can retrieve
65three-dimensional structures in the PDB library.17 With the
66development of high-throughput sequencing technologies, the
67gap between the number of protein sequences and resolved
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68 structures is being further widened. In the past, it was generally
69 accepted that the prediction accuracy obtained using sequence
70 alone is lower than using tertiary structure information.10

71 Notably, Khan and Vihinen18 made a systematic analysis of 11
72 kinds of software, indicating that several sequence-based
73 methods10,19,20 achieved predictive accuracy comparable to
74 the remaining structural methods. Recent studies have
75 reported that sequence-based predictors11,12 achieved similar
76 or better performance than structure-based ones. For the above
77 reasons, we devoted our interest to the sequence-based
78 methods in this work.
79 Among the machine learning methods used in practice,
80 gradient tree boosting has been shown to give state-of-the-art
81 results in many classification or regression tasks, while rarely
82 being used to predict stability changes upon point mutations. A
83 relatively new ensemble method called extreme gradient
84 boosting (XGBoost) was proposed and shined in many
85 competitions such as KDDCup and Kaggle,21 outperforming
86 many other known machine learning methods or deep learning
87 techniques both in accuracy and computational efficiency.
88 Recently published studies have also confirmed the successful
89 applications of XGBoost in computational biology,22−24

90 including our study to predict genome-wide RNA secondary
91 structure profiles.25

92 In this study, we developed a new sequence-based predictor
93 (BoostDDG) for protein stability change upon point mutation
94 using the XGBoost machine learning model. We collected and
95 curated a reliable training data set from recently published
96 studies and performed feature selection with parallel model
97 optimization by homologue-based cross-validation. Several
98 studies have pointed out that the predictions of most machine
99 learning methods show a bias toward destabilizing mutations
100 since their training sets are dominated by negative ΔΔG
101 values.26−29 To solve this problem, we trained our model using
102 a balanced learning set by introducing reverse mutations with
103 the opposite sign of corresponding ΔΔG values. The selected
104 features in the final input vector were also evaluated through
105 comprehensive ablation experiments. By testing on different
106 data sets, our method was shown to consistently achieve better
107 accuracies in comparison with other state-of-the-art methods.
108 The Web server and all the collected data of BoostDDG are
109 freely available at http://biomed.nscc-gz.cn/server/
110 BoostDDG/.

2. MATERIALS AND METHODS
111 2.1. Data Sets. We have collected the training and
112 independent test sets from the recent two studies by Folkman
113 et al.12 and Cao et al.16 Folkman’s study used 1676 mutations
114 for training, and two independent test sets (S236 and S543
115 containing 236 and 543 mutations, respectively). Cao’s study
116 used S5444 for training and S276 for testing. We merged
117 S1676 and S5444 data sets and removed mutations whose
118 occurring proteins have a sequence identity of ≥25% with any
119 protein in three independent test sets and finally extracted
120 2815 mutations in 150 proteins for training and cross-
121 validation. Furthermore, we employed the stability changes
122 on coded protein by PTEN and TPMT genes from the Critical
123 Assessment of Genome Interpretation (CAGI) challenge. After
124 removing the variants with unknown amino acid “X”, we
125 independently tested a total of 7363 missense mutations for
126 the PTEN (3736 mutations) and TPMT (3627 mutations)
127 proteins. In this challenge, a stability score was deployed to
128 describe the steady-state abundance of missense mutations

129with 0 signifying unstable, 1 signifying wild-type stability, and
130>1 signifying better stability than the wild-type. This data set
131was named the CAGI data set. Table S1 summarizes the details
132of these data sets.
1332.2. Candidate Features. In order to train our model, we
134extracted several classes of candidate features including
135evolutionary information, predicted structural features, and
136physicochemical properties for mutant and wild-type amino
137acids at target residues in the protein sequences.
138Evolutionary Conservation Features. In this study, we
139employed the position-specific scoring matrix (PSSM)
140generated from PSI-BLAST2.7.130 with an E-value threshold
141of 0.001 in three iterations to estimate evolutionary
142conservation of the mutation site. We built three features
143from the PSSM profile:ΔFt, ΔPt, and PEt. The ΔFt is computed
144as

Δ = −F F F( )/100t t mt t wt, ,

145where Ft,mt and Ft,wt are the occurrence frequency of mutant
146(mt) and wild-type (wt) amino acids at the mutation site t
147extracted from the PSSM (the second 20 columns),
148respectively. In the sites with zeros for all amino acids, the
149frequencies are extracted from the blosum62 matrix to the
150wild-type. The ΔPt is computed as

Δ = −P P Pt t mt t wt, ,

151where Pt,mt and Pt,wt are extracted from the log-likelihood ratio
152matrix (the first 20 columns) representing the probability of
153mutant (mt) and wild-type (wt) amino acids at the mutation
154site t. The conservation entropy at mutation site t is computed
155as

∑= ·
=

PE P Ft
j

t j t j
1

20

, ,

156Predicted Structural Features. Since our method is
157sequence based, we derived structural features according to
158structural properties predicted from protein sequences,
159including the relative solvent accessible surface area (rASA),
160three probabilities (helix, sheet, coil) of the secondary
161structure (SS), and the disorder probability. The first two
162classes of features were obtained from SPIDER 3.0,31 and the
163disorder probability was predicted by the SPOT-disorder,32

164both with the default parameters.
165Physicochemical Properties. We employed a group of
166seven physicochemical parameters provided by Meiler et al.33

167including hydrophobicity, isoelectric point, polarizability, steric
168parameter, volume, helix tendency, and sheet tendency,
169namely, AAPh7. we adopted ΔAAPh7 = AAPh7mt − AAPh7wt
170to calculate the difference between the mutant and wild-type
171amino acids at the mutation site. We also introduced another
172feature called AAscore inspired by Liu et al.34 to measure the
173distinction between wild-type (wt) and mutant (mt) amino
174acids as

∑θ = −R R I R I R( , )
1
7

( ( ) ( ))mt wt
j

j mt j wt

7
2

175where θ(Rmt, Rwt) represents the scores calculated using seven
176physicochemical properties of amino acids presented in the
177AAindex database (see Table S2). Ij(Rmt) and Ij(Rwt) are the
178normalized values of mutant and wild-type amino acids in
179property j, which can be calculated by
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180 where Ij̃(ai) symbolizes the original physicochemical parame-
181 ters of amino acid ai in the property j, and ak(k = 1,2,3,4···,20)
182 stands for the 20 common amino acids.
183 2.3. XGBoost Technique. BoostDDG was trained using
184 XGBoost, a novel tree-boosting algorithm to develop an
185 ensemble strong learner from multiple weak learners in an
186 additive way; the tree model outputs a weighted sum of the
187 prediction of each learner by readjusting weights of mislabeled
188 samples in each boosting step. The training procedure can be
189 summarized as follows:

190 (i) For each descriptor, sort the feature values and scan the
191 best splitting point.
192 (ii) Select the best splitting point that optimizes the
193 objective function.
194 (iii) Repeat the splitting procedure (the above two steps)
195 until the predetermined maximum tree depth is
196 achieved.
197 (iv) Assign prediction scores to leaves and prune negative
198 nodes in a bottom-up order.
199 (v) Repeat the above steps until the predetermined number
200 of trees is reached.

201 XGBoost has advantages in preventing overfitting by
202 incorporating regularization terms as well as shrinkage and
203 descriptor subsampling techniques. In addition, distributed and
204 parallel computing enables faster model training.
205 2.4. Training Procedure. To find out the optimal set of
206 features and parameters for our model, we coupled feature
207 selection with a parallel grid search procedure. Evaluation of
208 features and parameters in each step was performed using the
209 10-fold cross-validation.
210 Feature Selection. To ensure the effectiveness and non-
211 redundancy of all the input features in our model, we selected
212 the best subset of all candidate features using a bidirectional
213 greedy selection algorithm. Both Sequential Forward Selection
214 (SFS) and Sequential Backward Selection (SBS) algorithms
215 were adopted to avoid local optimal results to the greatest
216 extent. SFS (Algorithm 1) begins with an empty set of features
217 Fsel0 and iteratively searches the best feature f from the
218 remaining feature set Flef t and adds f to Fsel0 for a lower root-
219 mean-square error (RMSE). The procedure repeats until Flef t is
220 empty or RMSE no longer decreases. On the contrary, SBS
221 (Algorithm S1) starts with the full set of features Fsel0 and
222 removes the worst feature f to yield a lower RMSE. The reverse
223 search process stops when no feature could be discarded. We
224 compared the results generated by the two searching
225 algorithms and selected the one with a higher Pearson’s
226 correlation coefficient (PCC) as the final input feature set for
227 our model.
228 Parallel Grid Search. As the performances are affected by
229 hyperparameters, we have scanned all combinations of
230 parameters by a grid search procedure during the SFS/SBS
231 searches. However, it is considerably time consuming to
232 perform a gird search with the 10-fold cross-validation for each
233 kind of feature set. To speed up the computation, we
234 implemented an MPI-based approach to parallelize the search
235 process through distributing all the parameter combinations
236 among 288 CPU cores on the Tianhe-2 supercomputer,
237 leading to over 200 times faster than the computation on a

238single CPU core. Table S3 details the tested hyperparameters
239set up in the parallel grid search process and the final optimal
240values.

241Balanced Data Set with Reverse Mutations. Several
242previous studies have discussed the antisymmetric property
243of the free energy changes between wild-type and mutant
244proteins.26,28,29,35 The ΔΔG of direct mutation should be
245equal to the −ΔΔG of reverse variation according to
246thermodynamic reversibility of mutations. However, most of
247the predictors ignored the self-consistency requirement due to
248the bias toward destabilizing mutations in their training sets.
249Here, we trained our model with a balanced data set by
250introducing reverse mutations. Each reverse data point has the
251negative value of experimentally measured ΔΔG, and the
252corresponding features were calculated from the mutated
253protein sequence.
254Homologue-Based 10-Fold Cross-Validation. In general
255cross-validations, the training set can be separated based on
256mutations (completely random), residues (mutations on the
257same residue put together), proteins (mutations on the same
258protein put together), or homologues (mutations on
259homologous proteins put together). Since mutation, residue,
260and protein-based cross-validations may share protein
261information with the training samples, these schemes are likely
262to cause an overestimate of the performance, as also indicated
263in the previous study.12 Relatively, homologue-based evaluation
264is the strictest assessment since all mutations occurring on the
265same protein or homologous proteins are always grouped in
266the same fold to avoid overfitting for a specific group of
267proteins. We employed the homologue-based scheme on the
268S2815 data set to conduct our 10-fold cross-validation
269combined with feature selection and parameter optimization.
270We strictly separated the proteins from 111 homologous
271clusters in S2815 into 10 folds to ensure that no two folds
272share proteins with sequence similarity ≥ 25%. The S2815 data
273set was augmented by introducing hypothetical reverse
274variations, and each pair of mutations (direct and reverse)
275was included in the same fold to avoid overfitting. Moreover,
276we repeated each cross-validation procedure 10 times with 10
277regenerated 10-folds and averaged the results to gain an
278unbiased evaluation.
279Considering that our method is evolutionary based and it is
280time consuming to generate PSSM profiles from multiple
281sequence alignment, we also developed another method
282DeepDDG-single, which is single-sequence based and more
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283 computationally efficient by removing evolutionary conserva-
284 tion information and replacing the predicted secondary
285 structure features from SPIDER 3.031with those generated by
286 SPIDER3-single36 that also made predictions from only
287 sequences without using evolutionary information.

3. RESULTS
288 3.1. Feature Selection. We applied a bidirectional greedy
289 feature selection algorithm on the S2815 data set with 10-fold

290 cross-validation. The final combination of predictive features
291 for BoostDDG was composed of the following features:
292 ΔAAPh7 (the changes of hydrophobicity, volume, polar-
293 izability, isoelectric, helix tendency, sheet tendency, and steric),
294 rASA, ΔFt, AAscore, SS (helix probability, sheet probability,
295 and coil probability), and disorder probability. All these
296 features were real-valued and constituted a 14-dimensional

t1 297 input vector. Table 1 (left) displays the performances of
298 XGBoost-based models using additive feature groups in each
299 iteration of the SFS algorithm. The SFS selected six feature

300groups containing totally 14 features. The trained model
301achieved a PCC of 0.535, slightly higher than the 0.530 by
302using all features. The robustness of our trained model with
303selected features further proved essentially same results on the
304independent test of S543. The PCC of 0.540 is consistently
305higher than 0.531 by using all features. The results suggest that
306our feature selection procedure is helpful to improve
307prediction performance by removing redundancy and
308irrelevant features.
309For comparison, we also trained SVM regression models
310implemented in the scikit-learn37 python library using all
311features and selected features based on the S2815 data set.
312Both SVM models achieved PCCs lower than those generated
313by BoostDDG whether in cross-validation (0.515 and 0.519)
314or the independent test (0.505 and 0.511), indicating that
315XGBoost is better for this task. We also tested the SBS
316algorithm to remove redundant features from the whole feature
317set, but no feature was filtered out.
3183.2. Assessment of Feature Importance. To get further
319insights into the factors that contribute to the mutation-
320induced protein stability changes, we employed ablation
321experiments by removing each feature group from the final
322model and re-evaluating the performance based on the cross-
323validation and test set (Table 1, right). Both the PCCs of
324cross-validation and the independent test decrease the most
325when removing ΔAAPh7. This is understandable since
326ΔAAPh7 is a seven-dimensional feature vector that is larger
327than other feature groups. Among the remaining features, the
328exclusion of ΔFt caused the largest drop of PCC, confirming
329that evolutionary conservation is an essential factor in the
330prediction of stability changes. The predicted solvent
331accessibility has a significant effect on our model as well,
332which is consistent with the results by Dehghanpoor et al.38

333and Cao et al.,16 likely because residues with smaller accessible
334surface areas (buried) are more vulnerable to destabilizing
335substitutions. Different from the positive contribution of
336disorder probability in the cross-validation, the removal of
337disorder probability led to a slight increase in PCC from 0.540
338to 0.544 in the test set, likely due to the difference of data sets,
339so we still kept the disorder probability in our final model.
3403.3. Method Comparison on Three Benchmark Data
341Sets. We adopted three different benchmark test sets, S236
342together with S543 from Folkman et al.12 and S276 from Cao
343et al.16 to verify if BoostDDG generalizes well. None of the
344three test sets was used for training or optimizing our method.
345For comparing with other predictors, we only tested the
346experimentally measured ΔΔG values (direct mutations). We
347compared our method with 11 state-of-the-art methods,
348including four sequence-based methods (I Mutant,19

349MUpro,10 INPS,11 and EASE-MM12) and seven structure-

Table 1. PCC between Experimental ΔΔG and ΔΔG
Predicted by Using SFS-Selected Feature Groups or by
Removing Each Feature Group from the Final Model

Feature
groupsa CVc

Ind.
testc

Feature
groupsb CVc

Ind.
testc

ΔAAPh7 0.385 0.332 BoostDDG 0.535 0.540
+rASA 0.461 0.440 −ΔAAPh7 0.325 0.451
+ΔFt 0.510 0.508 −rASA 0.502 0.511
+SS 0.524 0.526 −AAscore 0.529 0.537
+AAscore 0.531 0.538 −ΔFt 0.478 0.471
+disorder 0.535 0.540 −disorder 0.523 0.544
all features 0.530 0.531 −SS 0.520 0.517
SVMd 0.515 0.505 SVMe 0.519 0.511

aAdditive feature groups selected in SFS algorithm. bRemoved feature
group from the final model. cCV, 10-fold cross-validation; Ind. test,
independent test on S543. dPerformance of SVM model using all
features. ePerformance of SVM model using selected features.

Table 2. Comparison of BoostDDG and Related Methods
on Three Benchmark Data Setsa

S236 test set S543 test set S276 test set

Methods PCC RMSE PCC RMSE PCC MAE

I Mutantb 0.443 1.18 0.323 1.37 0.391 1.08
I Mutantc 0.521 1.07 0.356 1.34 0.453 0.91
MUpro 0.362 1.20 0.332 1.32 0.190 1.06
Rosetta 0.270 1.88 0.380 3.58 0.339 5.25
FoldX 0.277 1.70 0.405 1.87 0.300 2.13
DFIRE 0.535 1.18 0.450 1.44 0.230 1.25
PoPMuSiC 0.570 1.05 0.533 1.21 0.443 0.91
EASE-MM 0.589 1.03 0.530 1.22 0.402 0.91
STRUM − − − − 0.447 0.88
mCSM − − − − 0.467 0.90
INPSd − − − − 0.474 0.89
SDM − − − − 0.483 1.02
BoostDDG-single 0.511 1.17 0.431 1.39 0.355 1.02
BoostDDG 0.600 1.01 0.540 1.21 0.514 0.78

aPredictions of S236 and S543 were calculated from the data
provided in Folkman’s study.12 Predictions of S276 were collected
from Cao’s study.16. bSequence-based I Mutant. cStructure-based I
Mutant. dComputed by ourselves.

Table 3. Independent Test Results for PTEN and TPMT
Data Sets in Terms of PCC and RMSE between Expected
Stability Scores and Linear-Fitted Predictions

PTEN TPMT TPMT and PTEN

Methods PCC RMSE PCC RMSE PCC RMSE

MUpro1.1 0.221 0.320 0.235 0.349 0.229 0.336
I Mutant2.0 0.199 0.322 0.251 0.348 0.228 0.336
EASE-MM 0.410 0.299 0.379 0.332 0.391 0.317
STRUM 0.134 0.325 0.426 0.325 0.320 0.327
INPS 0.444 0.294 0.383 0.332 0.418 0.313
BoostDDG 0.464 0.290 0.420 0.323 0.440 0.310
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350 based energy functions (Rosetta,39 FoldX,40 DFIRE,41

351 PoPMuSiC,42 STRUM,17 mCSM,43 SDM6). The structure-
352 based version of I Mutant was also included. We tested a few
353 methods (STRUM, mCSM, INPS, and SDM) only on the
354 S276 set since their training sets contain many proteins
355 sequentially similar to S543 and S236 sets.
356 The performance was assessed in terms of PCC and RMSE.
357 As S276 does not have reported RMSE in the previous study,16

358 we used the reported mean absolute error (MAE) instead on
t2 359 this data set for a consistent comparison. Table 2 outlines the

360 results obtained with each of the above-mentioned methods on
361 three test sets. Remarkably, BoostDDG produced the highest
362 PCC and lowest RMSE (or MAE) for all three data sets,
363 outperforming all sequence-based and structure-based meth-
364 ods tested in previous studies. BoostDDG achieved a higher
365 PCC in the S236 but a lower PCC in the S276 than the one in
366 S543. We noticed that the PCC in the S236 is even higher than
367 the PCC (= 0.54) in our training set S2815. This is likely
368 because S2815 and S276 data sets contain ΔΔG values
369 obtained under various experimental conditions, while the
370 S236 and S543 data sets only contain the ΔΔG measurements
371 under the standard pH and temperature. Thus, S236 is less
372 challenging as also seen by a typically higher PCC in S236 and
373 a lower PCC in S276 by other methods as well. Figures S1−S3
374 show the predicted versus experimentally measured ΔΔG on
375 three test sets, respectively.
376 We also tested our single-sequence-based method
377 BoostDDG-single on these data sets. Despite the gap with
378 evolutionary-based methods, it still surpasses some popular
379 sequence-based predictors (I Mutant19 and MUpro10). In fact,
380 the availability of evolutionary information can be limited since
381 most proteins have few known homologous sequences.36

382 Additionally, the generation of evolutionary sequence profile is
383 time consuming even for a short sequence. Therefore, the
384 single-sequence-based method is able to constitute a trade-off
385 between accuracy and computational efficiency.

3863.4. Independent Testing of CAGI Data Set.We further
387tested our method on two proteins, PTEN (phosphatase and
388TEnsin homologue) and TPMT (thiopurine S-methyl trans-
389ferase), from the CAGI challenge that was provided by Fowler
390and Fields.44 Both proteins have pairwise identities of less than
39125% with proteins in our training set. We used the full-length
392sequence of the two proteins to compare BoostDDG with five
393other leading sequence-based approaches (MUpro1.1,10 I
394Mutant2.0,19 EASE-MM,12 STRUM,17 and INPS11).
395STRUM is a structure-based method but can be applied to
396protein sequences with predicted 3D structures. Pejaver et al.
397analyzed the performances of several computational predictors
398on the PTEN and TPMT protein variants and found that
399predictors ranked different by metrics.45 For consistent
400comparisons, we calculated the PCC and RMSE between
401stability scores and the predictions of the six methods.
402 t3Table 3 outlines the PCC between stability scores and the
403prediction data of the six methods. BoostDDG produced a
404more balanced and accurate prediction for the two proteins
405with a PCC of 0.420−0.464. The second best method is INPS,
406achieving a PCC of 0.44 in total, which is significantly lower
407than our method according to the Fisher test (P = 0.05).
408Although STRUM yielded a comparable correlation (0.426)
409for the TPMT data, the accuracy for PTEN data (0.134) is
410much lower than other methods probably because the accuracy
411of the simulated 3D structure decreases when the sequence
412length is too long (>400). The independent test further
413demonstrates that our method is able to give an improved
414prediction when experimental structures are not available.
415 f1Figure 1 illustrates the expected stability score versus predicted
416ΔΔG.

4. DISCUSSION

417In this work, we have developed a new sequence-based
418method, BoostDDG, to predict the stability effects of point
419mutations based on XGBoost. We carefully selected features

Figure 1. Comparison between expected stability scores and scores predicted with six sequence-based methods for the CAGI data set.
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420 from initial input with a bidirectional greedy algorithm to
421 generate the best nonredundant feature set. To select features
422 in a fair and efficient way, we performed parallel model
423 optimization in each step of feature selection with the strictest
424 homologue-based 10-fold cross-validation, in which no two
425 folds shared homologous proteins.
426 We employed three different independent test sets from
427 Folkman et al.12 and Cao et al.16 and made a comparison with
428 other methods tested in their works. The results showed that
429 BoostDDG produced consistently the best predictions
430 measured in both PCC and RMSE. Furthermore, we
431 independently tested our method with the PTEN and
432 TPMT data sets from the CAGI challenge and found that
433 BoostDDG achieved a balanced correlation of 0.42−0.46 that
434 is superior to those generated by other sequence-based
435 methods. This can be largely attributed to our strict
436 homologue-based validation scheme and the robust regulariza-
437 tion performance of XGBoost. Since a majority of the previous
438 methods were trained and evaluated using a residue-based
439 scheme or a protein-based scheme with a high sequence
440 identity cutoff, their performance may be overestimated due to
441 the correlation between available data sets. XGBoost is a
442 regularized scalable extension of traditional tree-boosting
443 algorithms which is much less susceptible to overfitting by
444 tuning the corresponding parameters. Following the previous
445 studies,11,16 we included the thermodynamic reversibility of
446 variations to enhance the symmetry of our model. We found
447 the inclusion slightly increased the PCC on the CV (0.530 to
448 0.535) relative to the one without the inclusion and led to
449 small and divergent changes on four test sets (0.64−0.60 on
450 S236, 0.538−0.54 on S543, 0.49−0.51 on S276, and 0.45−0.44
451 on the CAGI data sets). Although far from extensive, the
452 independent test performance highlights that as a sequence-
453 based method BoostDDG is a promising alternative to existing
454 popular predictors when experimental structures are not
455 available.
456 Typically, the stability change ΔΔG is sensitive to
457 experimental conditions such as pH and temperature.
458 However, these environmental parameters were not encoded
459 into input features considering that the number of measure-
460 ments of each mutation at different environmental conditions
461 is too small to provide generalized predictions. Despite the
462 favorable independent test performance that our method has
463 achieved, the correlation values became lower on the larger test
464 sets, indicating that further improvement should be considered.
465 Given that our method only focuses on the features extracted
466 from the mutation site, we aim to design more useful features
467 to capture the interaction changes between neighboring
468 residues caused by mutations in our future work.
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