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ABSTRACT: Protein sequence profile prediction aims to generate multiple
sequences from structural information to advance the protein design. Protein
sequence profile can be computationally predicted by energy-based or
fragment-based methods. By integrating these methods with neural networks,
our previous method, SPIN2, has achieved a sequence recovery rate of 34%.
However, SPIN2 employed only one-dimensional (1D) structural properties
that are not sufficient to represent three-dimensional (3D) structures. In this
study, we represented 3D structures by 2D maps of pairwise residue distances
and developed a new method (SPROF) to predict protein sequence profiles
based on an image captioning learning frame. To our best knowledge, this is
the first method to employ a 2D distance map for predicting protein
properties. SPROF achieved 39.8% in sequence recovery of residues on the
independent test set, representing a 5.2% improvement over SPIN2. We also
found the sequence recovery increased with the number of their neighbored residues in 3D structural space, indicating that our
method can effectively learn long-range information from the 2D distance map. Thus, such network architecture using a 2D
distance map is expected to be useful for other 3D structure-based applications, such as binding site prediction, protein function
prediction, and protein interaction prediction. The online server and the source code is available at http://biomed.nscc-gz.cn
and https://github.com/biomed-AI/SPROF, respectively.

1. INTRODUCTION

Computational protein design attempts to design a protein
sequence that will fold into a predefined structure to perform a
desired function. The motivation of studies in this area is not
only to supplement, modify, or improve the function of wild-
type proteins but also to improve our fundamental
comprehension of the relationship between protein sequences,
structures, and functions. The past three decades have
witnessed significant progress in de novo protein design.1

More recently, by using the Rosetta package, Silva et al.
designed potent and selective mimics of anticancer drugs IL-2
and IL-15.2 Such advances have shown the potential to design
novel proteins for diagnostic, therapeutic, and industrial
purposes. While significant progress has been made, existing
protein design approaches have low success rates.3 This has led
to efforts on building a library of designed sequences or
sequence profiles (sequences randomly generated by specific
probabilities of 20 standard amino acids at each site) for
guiding experimental screening or directed evolution.4−7

Typically, protein sequences or sequence profiles can be
generated by applying mutations on a random sequence

iteratively to minimize its folding free energy with a proper
optimization algorithm.8−12 However, the search of global
minima is not guaranteed since it is an NP-hard combinatorial
optimization problem.13 To explore the possibility of more
computationally efficient protein design methods, Dai et al.
proposed a fragment-based method by searching structurally
similar fragments from known protein structures.14,15 For a
given target protein structure, the sequence profile obtained
from structurally similar fragments shows high similarity to its
sequence. This fragment-based method is of high computa-
tional efficiency but has a lack of information on nonlocal
residue interactions (close in three-dimensional (3D) structure
but not in sequence). Li et al. employed a knowledge-based
scoring function to compute residue specific energy values
according to 3D structures, and integrated them with the
profiles derived from fragments into neural networks.16 The
developed SPIN method by training neural network with the
local (e.g., fragment-derived) and nonlocal (e.g., energy-based)
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features achieved a sequence recovery of 30%. Later, the
sequence recovery was improved to 33% by using a deep
learning method.17 At the same time, SPIN2,18 an updated
version of SPIN, was also developed by utilizing a deep
learning network with additional features, slightly improving
the sequence recovery to 34.4%. However, all these prediction
methods utilized only one-dimensional (1D) structural proper-
ties that are not sufficient to represent 3D structures.
In order to make a full use of protein 3D structural

information, a few studies attempted to input the whole 3D
structural information into a 3D-covolutional neural network
(3D-CNN) for different biological problems, such as protein−
ligand scoring prediction,19 protein-binding site prediction,20

side chain conformation prediction,21 and quality assessment
of protein folds.22 However, it remains challenging to train an
accurate 3D-CNN network from the large number of
redundant variables involved in the highly sparse 3D matrix
with the limited number of 3D structures deposited in the
protein data bank (PDB).
On the other hand, it was well-known that a 3D structure

can be alternatively represented by the 2D contact map, which
simply shows whether distance of each residue pair is below a
threshold (usually 8 Å). For example, Skolnick et al. stated that
their algorithm was able to successfully fold a small protein
even with a small portion of inter-residue contacts.23 Many
recent reports showed that predicted contact map could even
produce high-quality 3D protein structures.24 Moreover, the
2D contact map is an image that can be efficiently modeled by
modern deep learning techniques, such as ResNet25 in the
contact map prediction task,26,27 and the prediction from 2D
contact maps to sequence profiles is similar to the image
captioning problem.28

There exists a few differences with traditional image
captioning tasks. First, classical image captioning tasks take
only a single 2D image as input, while our method’s inputs
include both 2D distance maps and 1D structural features.
Second, in image caption scenarios, images are often
preprocessed to a fixed size, but our distance maps should
not be resized because each pixel represents exactly one
residue pair, and residues far in the sequence might be
neighbored in 3D space. Third, the target output of image
captioning task is a sentence whose length is irrelevant with
input, while our input distance map is of size L × L, where L is
equal to the length of our target output (L × 20).
Inspired by the image captioning tasks, we have designed a

novel network architecture coupling bidirectional long short-
term memory (BiLSTM) with self-attentional 2D-convolution
neural networks (self-attentional CNN) to predict protein
sequence profile, namely SPROF method. The deep neural
network can process both 1D structural properties and a 2D
distance map reflecting the continuous distances between
residue pairs. To our best knowledge, this is the first study to
utilize a 2D distance map for structure-based prediction of
protein properties. The SPROF method achieved a sequence
recovery rate of 39.8% on the independent test set, which is
significantly higher than 34.6% achieved by the SPIN2 method
trained from only 1D structural features. Further analysis
indicated that the improvement was mostly contributed by
residues most contacted with other residues, suggesting that
the inclusion of 2D distance map can efficiently capture long-
range contacted information. Therefore, such network
architecture to utilize 2D distance map is expected to be
useful for other 3D structure-based applications such as

binding site prediction, protein function prediction, and
protein interaction.

2. MATERIALS AND METHODS

2.1. Data Sets. Since a training deep learning network
requires a large number of training samples, we employed the
data set curated in 2017, as used in our previous study.26 The
data set consists of 12,450 nonredundant chains with
resolution <2.5 Å, R-factor <1.0, sequence length ≥30, and
sequence identity ≤25% from the cullpdb Web site. Among
them, 11,200 chains deposited before June, 2015 were selected
as a training set, and the remaining 1250 were used as an
independent test set.
From this data set, we removed long chains with lengths

≥600 because the required memory for learning on these long
chains is over the 12GB memory limitation of our used
graphics processing unit (GPU) Nvidia GTX 1080 Ti. Finally,
we kept a data set of 7134 chains for training and 922 chains
for the test, namely TR7134 and TS922, respectively. To verify
the robustness of our model, we also collected all single chains
with structures deposited in the protein data bank from TBM-
hard targets in CASP13. The data set consists of 22 chains,
namely CASP13-TBM-hard.

2.2. Features Extraction. Our input features include both
1D structural features and 2D distance maps. The 1D
structural features include 150 features that are similar to
those used in SPIN2.18 For completeness, we make a brief
introduction on the 1D features.

1D Structural Features. The 1D structural features can be
divided into four feature groups: the secondary structures (8),
cosine and sine values of backbone angles φ, ψ, θ, ω, and τ
(10), local fragment-derived profiles (20), and the global
energy features (112), namely GF_SS, GF_AG, GF_FRAG,
and GF_ENERGY, respectively. GF_GS are one-hot DSSP
codes for eight-state protein secondary structures (C, G, H, I,
T, E, B, S). GF_AG are sine and cosine values of five backbone
angles φ, ψ, ω, θ and τ at each given position, where φ, ψ, and
ω are three main-chain dihedral angles rotated along N−Cα,
Cα−C, and Ci−Ni+1 bonds, respectively, τ is a dihedral angle
based on four neighboring Cα atoms Cαi−1−Cαi−Cαi+1−Cαi+2,
and θ is an angle intervening Cαi−1− Cαi−Cαi+1. GF_FRAG are
the probabilities of 20 standard residue types at each position
estimated from structurally similar fragments.15 GF_ENERGY
are the interaction energies of 20 standard residue types at a
selected position with the rest of the backbone positions
occupied by the alanine residue. The energies are computed by
using the DFIRE statistical scoring function29 based on
preferred backbone states-dependent side-chain conformations
as defined in the bbdep rotamer library.30 If one residue type
has >6 rotamers, only 6 most frequent rotamers were chosen.
We also used the lowest energies among all rotameric states for
each residue type. Finally, this generated a total of 112 (=(6 +
1) × 13 + (3 + 1) × 4 + (2 + 1) × 1 + 1 × 2) energy features.
Different from SPIN2, we did not utilize distances between
atoms within the same residue or belonging to neighboring
residues since they might include residual information in the
force field during the determination of protein 3D structures
according to experimental data.

2D Distance Maps. In addition to the 1D structural features
used by SPIN2, we derived an input feature of 2D distance
matrix S (namely distance map) with its elements:
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where dij is the distance between Cα atoms of residues i and j,
and d0 was set 4.0 Å, as also used in definition of the SP-
score.31 This conversion of distance ensures a score ranging
from 0 to 1, with a good discrimination for distances between 4
and 8 Å. We did not use exactly the same formula as SP-score
(dij

2 used in SP-score) since it produced slightly worse results
(results not shown).
2.3. Deep Learning Method. The deep neural network

(DNN) used in our previous work SPIN218 is a fully
connected neural network, which is proved to be efficient in
encoding 1D sequential information, but not powerful for
processing a 2D distance map. The 2D distance map can be
viewed as a special image, which is used to produce a protein
sequence profile as the caption of the image. Inspired by the
image captioning learning architecture, we have designed a
deep learning network coupling RNN and CNN to extract
features from 1D and 2D features, respectively. As shown in
Figure 1A, a self-attentional ultradeep residual convolutional
neural network (ResNet-CNN)25 encoded the 2D distance

map into a vector representation, which was then concatenated
with our 1D structural features and fed into an RNN module
to generate a protein sequence profile.

CNN Module. CNN has demonstrated superior perform-
ance in image tasks because of its implementation of shift,
scale, and distortion invariance through local receptive fields,
shared weights, and subsampling. Though the representation
depth of CNN is beneficial for the classification,32 the
vanishing gradient problem has become a major obstacle to
increasing the depth of CNN. In 2015, He et al. proposed
ResNet, an ultradeep residual neural network to solve the
vanishing gradient problem by employing shortcut connection
between outputs of a convolution layer and its previous layer.25

ResNet has been widely used in the task of protein contact
map prediction.26,27 The ResNet used in our model differs in
the fact that we employed a self-attention mechanism33 to
convert the output-size of ResNet module from L × L × Nf to
L × Nf, where L is the length of protein sequence and Nf
represents the kernels amount for the last convolution layer.

RNN Module. The features from the CNN module and 1D
structural features were concatenated together and fed into a
bidirectional long short-term memory recurrent neural net-

Figure 1. The neural network layout of SPROF with (A) illustrating the overall network architecture of SPROF, where L is the length of protein
sequence. (B) Details of the residual block, where Nin is the number of input layers, and Nf represents the number of kernels in each convolution
layer. (C) The structure of the multihead self-attention block, where Na represents the number of parallel attention layers (chosen as 40 by fine-
tuning), and Nh is the number of hidden states of fully connected (FC) layers (chosen as 50).
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work (LSTM-BRNN or BiLSTM) to generate the protein
sequence profile. Unlike standard feed forward neural net-
works, RNN retains a state that can represent information from
an arbitrarily long context window.34 However, traditional
RNNs have no ability to learn long-range dependencies as a
result of gradient vanishing problems. To overcome this
problem, Hochreiter and Schmidhuber proposed the LSTM
technique35 using carefully designed nodes with recurrent
edges of fixed unit weight.36 Later, RNN with bidirectional
LSTM to exploit both preceding and following dependencies
was proposed and has been proved to outperform unidirec-
tional ones in framewise phoneme classification.37 Currently,
LSTM-BRNN has been widely used in many bioinformatics
studies.38,39

2.4. Neural Networks Implementation Details. In
SPROF, 2D distance map (L × L with L as the protein
length) was encoded by the self-attentional ResNet into
sequential tensors (L × 64), and was then concatenated with
1D structural features (L × 150). The concatenated features (L
× 214) were fed into a bidirectional LSTM to generate a
decoded tensor of L × 128. Finally, a series of fully connected
(FC) layers and activation layers conducted nonlinear-
transformations on the output of bidirectional LSTM to
obtain a prediction result of (L × 20), which represented
possibilities of 20 amino acid types on each sequence position.
Our self-attentional ResNet module is composed of a series

of residual blocks (Figure 1B) and a self-attention block
(Figure 1C).
Residual Block. Our residual block employed an exponential

linear unit (ELU) as activation layer instead of a rectified linear
unit (ReLU) used by typical residual blocks. The ELU
activation function was shown to be more effective than
standard ReLU in learning of the ResNet.40 Furthermore,
before each activation layer, regularization was applied to the
network through the use of batch normalization.41 Considering
the limitation of the used GPU memory size (12GB), we
employed 30 ResNet blocks (30 × 2 = 60 convolution layers)
in our final model. It should be noted that a smaller window
size with more convolution layers is beneficial for the
performance of CNN.32 Thus, the kernel size of two
convolution layers in each residual block was chosen as 5 ×
5 or 3 × 3, respectively.
Self-Attention Block. The self-attention block shown in

Figure 1C converts feature size from L × L × 64 into L × 64.
Mathematically, self-attention mechanism is implemented by a
fully connected neural network, SoftMax, and matrix dot-
multiplication. The SoftMax is applied on the second
dimension, making elements in each slice sum up to 1.
Biologically, the i-th slice represents the i-th residue, and the j-
th element in this slice represents the importance of the j-th
residue on the i-th residue. The attention mechanism was
designed to catch the most affecting residues for prediction of
each given residue. As shown in Figure S1A, the multihead
attention map highlights the most important residue pairs,
which are often spatially close (shown in Figure S1B).
Handling Variable Length Inputs. Different from general

image tasks that often preprocess images to the same size,
protein sequence profile prediction has to handle proteins of
variable sizes. Therefore, we had to design a CNN that could
process inputs of variable sizes and ensure the output to have a
size equaling to its size. Finally, our neural networks do not
have pooling layers as CNN networks often do, and the output

of the last residual block remains the same value (L) of width
and height.

Bidirectional LSTM. The input of our bidirectional LSTM is
in size of L × 214. The bidirectional LSTM module consists of
three layers. In each layer, there are two independent LSTM
representing two directions, respectively. Our LSTM cells
consist of 64 one-cell memory blocks, culminating in 128
hidden states for each bidirectional LSTM layer.

Linear Layers. Our linear layers are fully connected. The
first FC layer consists of 64 nodes plus a bias node with an
ELU activation. The FC output layer has 20 output neurons
and a sigmoid activation to convert the output into a likelihood
of each amino acid type at each position (L × 20).

Tools. We trained our model in the framework of
Facebook’s PyTorch library (v0.4.0), which enables us to
accelerate the model training on an Nvidia GeForce GTX 1080
GPU. It has been shown that the use of a GPU for training a
neural network can speed up by a factor up to 20.42

Optimization Algorithm and Dropout. Our model was
trained with cross entropy as the loss function and ADAM
algorithm for optimization.43 ADAM optimization algorithm is
generally considered to be robust for the selection of
hyperparameters and converges more quickly than the
traditionally used stochastic gradient descent (SGD). We
used a learning rate of 0.0005 in this study. Furthermore, a
50% dropout rate was adopted at the output of the fully
connected layer during training to reduce overfitting.44

Hyperparameters Tuning by the Cross Validation. The
architecture and hyperparameters were optimized by the 5-fold
cross validation, where the training set was randomly divided
into five different subsets. Each time four of these subsets were
used to train a model, and the left one was used for the test.
This process was repeated for five times so that all five subsets
were tested exactly once, and the average accuracy over five
tests was used for the overall performance. With the
hyperparameters achieving the best performance, the final
model was trained on the whole training set and tested on the
independent test set.

Evaluation. We evaluated the performance by the native
sequence recovery rate that is the percentage of residues that
were correctly predicted. A residue was considered to be
correctly predicted if the wild-type residue type has the highest
value in the predicted profile for 20 residue type at the
position. As the evaluation metric based on one-to-one
mapping is strict, we employed the other evaluation metric
called positively matched rate. For this metric, we considered a
prediction is correct if the predicted and actual amino acids
have a positive value in the BLOSUM62 matrix.45

In addition, we also evaluated the performance of different
types of residues, we calculated precision and recall for residue
R as

=
+

Precision
TP

TP FP (2)

and

=
+
TP

TP FN
recall

(3)

,where TP is the number of correctly predicted residues for
type R, FP is the number of residues wrongly predicted as R,
and FN is the number of incorrectly predicted residues of wild-
type R.
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3. RESULTS
3.1. Model Selection and Feature Importance. Table 1

illustrates the performance of SPROF and its variants with

different network architectures. SPROF achieved sequence
recovery of 39.9% and 39.8% on the 5-fold cross validation
(CV) and independent tests, respectively. The consistent
results indicate the robustness of the SPROF method. An
exclusion of the self-attention block (SPROF-noAtt) caused a
decrease of 0.9% in the CV and 1.2% in the independent tests.
The removal of RNN module and 1D structural features
(SPROF-CNN) decreased the sequence recovery to 36.1% in
the CV. The slightly higher recovery rate (36.3%) in the test
set than the CV should result from random fluctuations. The
greatest drop was from SPROF-RNN that excluded the CNN
module and 2D distance map. This caused a 6% and 6.6% drop
of native sequence recoveries in the training set and
independent test, respectively. The results demonstrate the
benefits of utilizing the distance map features and image
captioning method.
It is of interest to see which type of features made the

greatest contribution in the prediction. We excluded each type
of features one-by-one to obtain five different feature sets for
model training and then compared the performance of each
model. Table 2 shows the sequence recoveries of these five

models on the independent test set. As expected, 2D distance
map features contributed the most in the sequence recovery
(contributing 6.6% on independent test), followed by energy-
based features (1.8%) that made the highest contribution in
the SPIN2. The exclusion of fragment-based features made
overall sequence recovery 0.7% lower, and the exclusion of
secondary structure features or backbone torsion angles
features also marginally decreased the overall sequence
recovery (0.3% and 0.2%, respectively). These results highlight
the importance of distance map in our prediction model, which

inspire us to employ distance map features on other 3D
structure-based applications in future.

3.2. Comparison with Other Methods.We further made
a direct comparison with SPIN2 on the test set TS922 and
CASP13-TBM-hard. As shown in Table 3, there is about 5%

consistent improvement from SPIN2 to SPROF for the native
sequence recovery rates on both the TS922 and CASP13-
TBM-hard data sets. When evaluated by the positively
matched rate, both methods have higher absolute values, and
our method has a consistent improvement of around 5% over
SPIN2. The performances of CASP13-TBM-hard targets by
both methods are detailed in Table S1. Since Wang’s method17

is not available online, we cannot make a direct comparison.
According to published results, SPIN2 and Wang’s method
should be close because the sequence recovery of SPIN2 is
over 4% higher than SPIN’s, while Wang’s method is about 3%
higher than SPIN’s.
We compared the performance of SPROF, SPROF-CNN,

SPROF-RNN, and SPIN2 for proteins chains with different
lengths on TS922. As shown in Figure 2A, SPROF consistently
outperformed SPIN2 in all intervals and SPROF-CNN model
is somewhere in between. SPROF-RNN model is less accurate
than SPIN2, likely because SPROF-RNN model excluded
partial features employed by SPIN2. A direct comparison of
the sequence recovery rates (Figure 2B) suggests that SPROF
is significantly better than SPIN2 (P-value <10−99) according
to the pairwise t test, where SPROF outperformed SPIN2 on
815 protein chains, worse on 76 chains, and tied on the
remained 31 chains.
For a given residue type, we compared the recall and

precision score of SPROF and SPIN2 on TS922, as shown in
Figure 2C,D, respectively. SPROF outperformed SPIN2 in 15
(75% of 20) amino acids types for recall and 17 (85% of 20)
for precision.
We noticed that in Figure 2B, there are a few chains with

high sequence recoveries (∼50−60%) and a few with very low
ones (∼10−20%). Table S2 lists chains with 10 highest and 10
lowest sequence recovery rates. Chains of low recovery rates
are mostly short chains and thus do not have a well-formed
hydrophobic core. On the other hand, the 10 chains of highest
sequence recovery rates show higher proportions of buried
residues than the average.
To explore why SPROF outperformed SPIN2, we plotted

the prediction accuracy of residues as a function of their
contact number for different methods. The contact number
was defined as the number of neighboring Cα atoms no farther
than 13 Å from a given Cα atom. As shown in Figure 3A,
SPROF and SPROF-CNN show an increase of prediction
accuracy with the addition of neighbored residues. By

Table 1. Native Sequence Recovery Rates Achieved by the
SPROF and Its Variants on 5-Fold Cross Validation and
Independent Test

model TR7134 (cross validation) TS922 (test)

SPROFa 39.9% 39.8%
SPROF-noAttb 39.0% 38.6%
SPROF-CNNc 36.1% 36.3%
SPROF-RNNd 33.9% 33.2%

aThe best performed model, details shown in Figure 1. bSPROF
without self-attention block. cUsing the CNN module without
bidirectional LSTM module or input of 1D structural features.
dUsing the RNN module without self-attentional ResNet module or
input of 2D distance maps.

Table 2. Comparison of Sequence Recoveries after
Excluding One Feature Group From SPROF

feature excluded TR7134 (cross validation) TS922 (test)

SPROF 39.9% 39.8%
distance map 33.9% 33.2%
GF_ENERGY 37.8% 38.0%
GF_FRAG 38.7% 39.1%
GF_SS 39.6% 39.5%
GF_AG 39.7% 39.6%

Table 3. Performance Comparison of SPIN2 and SPROF on
TS922 and CASP13-TBM-hard Datasets

performance evaluation

sequence recovery ratea positively matched rateb

method TS922 CASP13-TBM-hard TS922 CASP13-TBM-hard

SPROF 39.8% 39.2% 59.9% 57.2%
SPIN2 34.6% 34.6% 54.3% 52.1%

aThe proportion of matched residues between prediction and target.
bThe proportion of residues in the prediction sequence that have
positive values in BLOSUM62 with residues in the target sequence.
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comparison, SPROF-RNN and SPIN2 without using a 2D
distance map show close to flat performances for all residues.
This comparison indicated that the inclusion of 2D distance
map helped the model to capture information on residues
contacted in 3D structure.
We also compared the prediction accuracies between

binding and nonbinding sites. By mapping the protein chains
of TS922 to those defined in BioLip,46 we generated a data set
of 357 chains data set. As shown in Figure 3B, the prediction
accuracies of residues decrease with the relative solvent surface
area, and the accuracy of binding residues is consistently lower
than that of nonbinding residues. This is as expected because
buried residues maintain 3D spatial structures, and binding

residues are evolved mainly for protein function, and not
necessary to be optimized for 3D structure.

3.3. Case Study. To illustrate our method, we chose the
precorrin-6A reductase cobK (pdb ID: 5c4n chain D) for
comparison of methods. This protein chain contains 8 helical
and 12 β sheet fragments, in total 244 amino acids. For a clear
look of the predicted sequence profile, we plotted sequence
logos for fragments of residue index 75-104, the red part in the
Figure 4A. SPROF and SPIN2 achieved accuracies of 60% and
26.7% for this fragment, respectively. As shown in the Figure
4C,D, SPROF has made a correct prediction for 11 amino
acids (red amino acids in Figure 4E) that are not correctly
predicted by SPIN2. A deep look indicates most of the amino

Figure 2. (A) The average sequence recovery rates of protein chains in different length intervals by four methods. (B) The sequence recovery for
each chain in TS922 by SPROF and SPIN2. (C) The recall and (D) precision for different amino acids residue types by SPIN2 and SPROF over
TS922.

Figure 3. (A) The accuracy for residues as a function of their contact numbers for SPROF and SPIN2. (B) The line plot of prediction accuracy for
residues in different rASA intervals and binding or nonbinding site on 357 chains (overlap with BioLip) of TS922.
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acids in the list are hydrophobic (6 alanine and 1 valine). This
result is consistent with our expectation because our method is
better for predicting most contacted residues that are
frequently hydrophobic amino acids. SPROF only misses one
prediction (no. 96) that is correctly predicted by SPIN2. On
this position, the native amino acid (threonine) ranked the
third by our prediction.

4. CONCLUSIONS
This study highlights the power of applying an image
captioning method on a 2D distance map for protein sequence
profile prediction. We proposed a protein sequence profile
prediction method SPROF which combined recurrent neural
network, convolution neural network, and attention mecha-
nism. SPROF has improved the native sequence recovery from
34.6% (previous method SPIN2) to 39.8% on our independent
test set. The improvement is consistent regardless of protein
lengths, test sets (cross validation and independent test),
evaluation metrics (sequence recovery or positively matched
rate), or types of amino acids (in precision or recall score). We
also trained a model by using only 1D structural features,
which is significantly lower than SPROF with inclusion of 2D
distance map. This is reasonable because distance maps are
capable of encoding the 3D structural information on proteins.
Inspired by an image captioning method, SPROF is capable of
extracting these 3D structural information and thus obtains
higher accuracy for sequence prediction. More importantly,
this study has provided a new architecture to advance

structure-based predictions, such as predictions of protein
interaction,47 binding site,48 and protein function.49 For
example, we have recently combined this architecture for
prediction of protein−drug interaction.50 Moreover, there is a
significant progress to make a prediction of contact map from
sequence by combining deep learning and genomic big
data,26,51 which provides a potential way to employ a predicted
2D contact map to substitute or concatenate with the one-hot
encoding for sequential information in tasks like protein
function prediction.52

The generated sequence profiles could be integrated into
software like Rosetta to further improve the result of protein
design, as reported in previous study.15 To validate the ability
of such designed sequences to fold into the respective scaffold,
either computational53,54 or experimental55 validation could be
applied in the future. Moreover, the generated sequence
profiles have been proven beneficial for improving existing fold
recognition technique studies,14,56 so our improved prediction
of the sequence profile might advance the structure prediction.
In addition, the significant difference of the native residue
recovery between binding and nonbinding residues may be
helpful for discriminating functional residues.
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Figure 4. (A) 3D structure, (B) distance map, and sequence logo generated by (C) SPROF and (D) SPIN2 for the precorrin-6A reductase cobK
(pdb ID: 5c4nD). For a clear look, only fragment 75-104 (red in the 3D structure) was shown in the sequence logo generated by SPIN2 and
SPROF. The wild-type sequence and indexes were provided in (E) with red, purple, green, and black for correct prediction of amino acids by
SPORF only, SPIN2 only, both methods, and none, respectively.
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A pair of figures indicating the capability of self-attention
mechanism to catch the most important residue pairs. A
table comparing the performance of SPIN2 and SPROF
on CASP13-TBM-hard test set. A table listing chains
with the top10 highest or lowest sequence recovery rates
in the TS922 test set (PDF)
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