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Abstract
Constructing proper representations of molecules
lies at the core of numerous tasks such as molecular
property prediction and drug design. Graph neural
networks, especially message passing neural net-
work (MPNN) and its variants, have recently made
remarkable achievements in molecular graph mod-
eling. Albeit powerful, the one-sided focuses on
atom (node) or bond (edge) information of existing
MPNN methods lead to the insufficient representa-
tions of the attributed molecular graphs. Herein, we
propose a Communicative Message Passing Neu-
ral Network (CMPNN) to improve the molecular
embedding by strengthening the message interac-
tions between nodes and edges through a commu-
nicative kernel. In addition, the message generation
process is enriched by introducing a new message
booster module. Extensive experiments demon-
strated that the proposed model obtained superior
performances against state-of-the-art baselines on
six chemical property datasets. Further visualiza-
tion also showed better representation capacity of
our model.

1 Introduction
Accurately predicting the properties of molecules has always
been a topic of interest in the pharmaceutical community.
The major goal of molecular property prediction is to remove
compounds which are more likely to have property liabili-
ties during downstream development, hence the desire to save
tons of resources as well as time [Cherkasov et al.2014].

Briefly, the key idea of property prediction is to first map
an input molecule m to a dense feature vector with a repre-
sentation function, h = g(m), and then make prediction of
the targeted property based on the embedding by y = f(h).

Early studies of quantitative structure-property relation-
ships (QSPR) have been carried out based upon feature en-
gineering e.g. expert-crafted physicochemical descriptors
[Nettles et al.2007] and molecular fingerprints [Rogers and
†These two authors contributed equally.
∗Corresponding author.

Hahn2010]. However, descriptor-based representation meth-
ods presume that all information related to the task predic-
tions is covered in the chosen descriptor set, restricting the
capability for a model to learn beyond the existing chemical
knowledge.

In recent decades, with the substantial increase in avail-
able experimental molecular properties data points, machine
learning especially deep learning methods have shown strong
potentials to compete with or even outperform conventional
approaches. Compared to the previous descriptor-based
methods, deep learning-based models can take the relatively
lossless ‘raw’ molecule formats e.g. SMILES strings and
topological graphs as input, and then train models in an end-
to-end fashion to predict the target endpoints. The representa-
tions obtained from these models are potentially able to pro-
file comprehensive information for molecules.

A chemical structure could be intrinsically depicted as a
hydrogen-depleted topological graphs whose nodes represent
atoms with edges representing for bonds. In this sense, graph-
based algorithms could be intuitively introduced to learn the
representations of molecules. [Duvenaud et al.2015] reported
a neural fingerprint method as an alternative to molecular fin-
gerprints, and also one of the earliest efforts in employing
graph convolution approaches on chemical representations.
Then, several graph convolution models were reported as ex-
tensions to the Duvenaud’s method by increasing molecu-
lar attributes. Recently [Gilmer et al.2017] summarized a
general architecture called message passing neural networks
(MPNNs) that demonstrated superior performance in predic-
tions of quantum chemical properties. Broadly speaking, the
MPNN framework includes three main modules: (1) message
passing module, where, information of each atom is transmit-
ted from its neighbors across the molecular graph into a mes-
sage vector; (2) updating module, where the hidden states at
each atom in the molecule are updated based on the obtained
message vector;

However, MPNN and its variants mainly focused on ob-
taining effective vertices (atoms) embedding, but ignored the
information carried by edges (bonds) that can be favorable
to many downstream tasks such as node or edge embeddings
and graph representations. To alleviate this problem, directed
MPNN (D-MPNN) [Yang et al.2019] has been introduced
to alleviate the problem by using messages associated with
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directed edges (bonds) rather than those with vertices. The
main contribution of DMPNN is that it can make use of the
bond attributes as well as avoid unnecessary loops in the mes-
sage passing trajectory, and thus obtain information without
redundancy. This bond-based message passing procedure has
shown outstanding performances compared to the previous
MPNNs. However, the DMPNN has ignored the passing back
of messages from bonds to atoms. The failure to communi-
cate both types of messages makes DMPNN limited to cap-
ture the complementary information of atoms and bonds effi-
ciently.

In this study, we proposed a directed graph-based Com-
municative Message Passing Neural Network (CMPNN)∗ to
improve the molecular graph embedding by strengthening
the message interactions between edges (bonds) and nodes
(atoms). In our framework, both the bond and atom em-
beddings are updated during the training process. To avoid
information redundancy, we elaborately designed an node-
edge interaction procedure and compared it with several vari-
ants. In addition, a message booster was introduced to en-
rich the message generation process. Extensive experiments
demonstrated that the proposed model obtained superior per-
formance against state-of-the-art baselines on six chemical
graph datasets. Further visualization of atom embedding also
showed better model representation capacity.

In summary, the main contributions of our work are as fol-
lows:

• We propose a directed graph-based Communicative
Message Passing Neural Network, an efficient graph
model to update the edge and node embeddings inter-
actively.

• A message booster is introduced to enrich the message
generation process, which can be generalized into other
graph-related tasks such as the node classification and
link prediction.

• Extensive experiments are conducted on different levels
of public datasets to demonstrate the effectiveness of our
method.

2 Related Work
Descriptor-based Representation. One of the most popu-
lar descriptors is the chemical fingerprints e.g. Extended-
Connectivity Fingerprints (ECFP) [Rogers and Hahn2010].
These fingerprints encode the neighboring environments of
heavy atoms in a compound into a fixed bit string with a
hash function, where each bit indicates whether a certain
substructure is present in the compound. A series of neu-
ral network-based methods with fingerprint inputs have been
developed [Dahl et al.2014], which have been shown to sig-
nificantly improve on current Random Forest or SVM based
models. However, because of the requirement of large space
to represent molecules, the resulting hash bit strings are usu-
ally highly sparse. Besides, the non-invertible character of
hash functions makes it hard to interpret the relationship be-
tween properties and structures.

∗https://github.com/SY575/CMPNN

G = (V,E) Input graph.
u, v,... Nodes in G.
eu,v A link from node u to v.
N(v) The set of neighbor nodes of node v.
x Raw feature.

hi(v)
The hidden representation of node v in
layer i.

hi(ev,w)
The hidden representation of edge ev,w in
layer i.

W Weight matrix.
σ Acitive function.

Table 1: Mathematical notation list.

Linear Notation-based Representation. Another option
for molecule representations is the molecular linear notation,
among which the most common one is the SMILES nota-
tionweininger1989smiles. This linear representation encodes
the topological information of a molecule based on common
chemical bonding rules. Several attempts were made to feed
SMILES into more complicated neural networks [Zheng et
al.2019b] [Jastrzebski et al.2016] [Zheng et al.2020] [Zheng
et al.2019a]. Nevertheless, the poor scalability of the sequen-
tial representation and the loss of spatial information limit the
performances of these kinds of approaches.

Graph Structure-based Representation. Recent works
started to explore the molecular graph representation. [Duve-
naud et al.2015] first applied convolutional layers to encode
molecular graphs into neural fingerprints. Following this
work, several variants have made various extensions to work
on property prediction tasks [Coley et al.2017], while most
of them focused on atom-based message passing. To gain
supplementary information from bonds, [Kearnes et al.2016]
proposed to utilize attributes of both nodes (atoms) and edges
(bonds), and [Gilmer et al.2017] generalized it into a MPNN
framework. [Coley et al.2017] created atom-bond feature
vectors by concatenating features of an atom and all neigh-
boring bonds. In these works, atom attributes and bond at-
tributes are treated homogeneously instead of with internal re-
lations. Though a few more studies explored the information
of the edges through network modules like the edge atten-
tion mechanism [Shang et al.2018] and edge memory mod-
ule [Withnall et al.2020], there models were yet built upon
the atom-based MPNN and thus suffered from the informa-
tion redundancy during iterations. DMPNN [Yang et al.2019]
was introduced as an alternative since it treated the molecu-
lar graph as an edge-oriented directed structure, avoiding the
unnecessary loops in training procedure.

The proposed CMPNN follows the edge-based message
passing in DMPNN and introduces the node-edge interaction
module to leverage the node and edge attributes during mes-
sage passing. To our best knowledge, this work is the first
study to build node-edge communicative message passing in
the directed graph.

3 Methods
The key idea behind CMPNN is that we strengthen the mes-
sage interactions between bonds and atoms to obtain a bet-
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Figure 1: Comparing message passing procedure among MPNN
(left), DMPNN (middle) and CMPNN (right).

ter representation of a molecular graph. We first describe
the overview of communicative message passing algorithm,
which updates the atom and bond messages in a directed
molecular graph interactively, and aggregates all information
to obtain the neural representation of a molecule (Section
3.1). We then separately introduce two augmentations, which
we refer to as the message booster (Section 3.2) and node-
edge message communication function (Section 3.3). Nota-
tions in this paper are listed in Table 1.

3.1 Communicative Message Passing
In this section, we describe the molecular embedding genera-
tion with communicative message passing (Algorithm 1) and
compare it with original MPNN and DMPNN.

The CMPNN interactively operates on edge hidden states
h(ev,w), node hidden state h(v), message m(ev,w) and m(v)
; while MPNN operates on the node h(v) and message m(v);
DMPNN on the edge hidden states h(ev,w) and message
m(ev,w). An overall comparison among three MPNNs are
depicted in Figure 1.

Figure 2: Directed message passing procedure.

Algorithm 1 describes the CMPNN embedding generation
process. The input of the Algorithm 1 is the directed molec-
ular graph, G = (V,E), including features for all nodes xv ,
∀v ∈ V , and features for all edges xev,w , ev,w ∈ E. The node
and edge attributes are propagated at each iteration as below.
In the outer loop, each step proceeds as follows, where k de-
notes the current depth of the message passing: First, each
node v ∈ V aggregates representations of their incoming
edges in G, {hk−1(ev,w), ∀w ∈ N(v)}, creating an inter-
mediate message vector mk(v) instead of using information
from its neighboring nodes. Note that this is the main differ-
ence between undirected and directed graph-based message

Algorithm 1 CMPNN embedding generation algorithm
Input: Graph G(V,E); depth K; input node and edge
features {xev,w

, ∀ev,w ∈ E, xv , ∀v ∈ V }; aggregate function
AGGREGATE; communicate function COMMUNICATE; weight
matrix W.
Output: Graph-wise vector representation z.

1: h0(ev,w)← xev,w
, ∀ev,w ∈ E; h0(v)← xv , ∀v ∈ V

2: for k = 1 . . .K do
3: for v ∈ V do
4: mk(v)← AGGREGATE({hk−1(eu,v), ∀u ∈ N(v)});
5: hk(v)← COMMUNICATE(mk(v), hk−1(v))
6: end for
7: for e ∈ E do
8: mk(ev,w)← hk(v) - hk−1(ew,v);
9: hk(ev,w)← σ(h0(ev,w) + W · mk(ev,w))

10: end for
11: end for
12: m(v)← AGGREGATE({hK(eu,v), ∀u ∈ N(v)})
13: h(v)← COMMUNICATE(m(v), hK(v), x(v))))
14: z← Readout({h(v), ∀v ∈ V })

passing. After obtaining the message vector, CMPNN then
concatenates the node’s current hidden state hk−1(v) with the
message vector, and this concatenated feature vector is fed
through a communicative function to update the node’s hid-
den state to hk(v) . The hidden state hk(v) can be thought of
as a message transfer station that receives the incoming mes-
sages and sends an integrated one to the next station. The
communicative function can be implemented by a selection
of architectures, and we discuss different architecture choices
in Section 3.3 below. During the intermediate message vector
generation, we also introduce an new message booster func-
tion to amplify the incoming information and the details will
be further discussed in Section 3.2.

In original DMPNN, the edge message mk(ev,w) is
generated based on the neighboring edge hidden states
{hk−1(eu,v), ∀u ∈ N(v)\w}. In particular, message
mk(ev,w) does not depend on its inverse edge features
hk−1(ew,v). In CMPNN, however, we have obtained a high
level neighboring edges information in hk(v). Thus, we can
obtain the mk(v, w) by subtracting its inverse bond informa-
tion from the hk(v). This step enables the message passing
from the source node to the directed edge. For the updating
of edge hidden states, mk(ev,w) is first fed into a fully con-
nected layer and added with the initial h0(ev,w) as a skip con-
nection following [Yang et al.2019], and is then transformed
by a rectified linear unit (ReLU) to be used at the next iter-
ation. The directed message passing procedure in CMPNN
can be referred to Figure 2.

After iterating K steps, one more round of interaction is
employed to interact the enriched bond messages and atom
messages. Here, the messages from incoming bonds, current
atom’s representation, and the atom’s initial information are
gathered to obtain the final atom representation h(v) of the
molecule through a communicative function.
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Finally, a readout operator is applied to get a fixed feature
vector for the molecule. We simplified the one in MPNN as:

z =
∑
v∈V

GRU(H(v)) (1)

where H(v) is the set of atom representations in the molecu-
lar graph G, GRU is the Gated Recurrent Unit introduced in
Cho et al. (2014). Finally, we perform downstream property
predictions ŷ = f(h) where f(·) is a fully connected layer.

3.2 Message Booster

Figure 3: The architecture of the message booster.

The key step of message passing is the message aggre-
gation. [Hamilton et al.2017] mentioned two efficient ways
to aggregate messages from different edges, including max
pooling and long short-term memory(LSTM) aggregators.
[Xu et al.2018] demonstrated that the sum pooling aggregator
could capture the full multiset and outperformed max or mean
pooling. [Yang et al.2019] also summed the messages from
their neighboring edges in updating module. These aggrega-
tors are parameter efficient but consider each edge indepen-
dently without taking into account the relationships between
the edges. Here, we introduced a message booster, which can
be defined as:

mk
i (v) =

∑
u∈N(v)

hk−1(eu,v) (2)

boosterk(v) = pooling(mk
i (v)) (3)

mk(v) = mk
i (v)� boosterk(v) (4)

where the mk
i (v) is an intermediate message vector, and pool-

ing operator is a max pooling function here. � is an element-
wise multiplication operator.

The intuition behind the message booster is that different
edge messages have different strengths, and the hidden state
of a node is largely on the strongest message from the incom-
ing edges. To this end, we applied a max pooling to highlight
the the edge with the highest information intensity. Other
pooling strategies could also be used in this place and the
results of self-attentive pooling [Veličković et al.2017] were
provided in Section 4.2 for a comparison.

3.3 Node-Edge Message Communication
Another key step is to leverage the information from nodes
and edges that is transformed to be used at next iteration. In
MPNN and DMPNN, it was referred to as the updating step,
since they updated the hidden state on the node or edge in-
formation. Because CMPNN updates the hidden states by in-
teracting the node and directed edge information, this update
function must have the capability to capture the interactions
between node and edge features.

Here, we examined three candidate node-edge message
communication modules:

Inner Product Kernel. A simple idea to interact node
message and edge message is to multiply their features. The
updated message can be obtained as:

hk(v) = hk−1(v)�m(v) (5)

where m(v) contains the neighboring incoming edge mes-
sages and hk−1(v) represents the current node message. �
is an element-wise multiplication operator.

Gated Graph Kernel. The second candidate communica-
tive function we implemented is the update function intro-
duced in [Li et al.2015], as:

hk(v) = GRU(hk−1(v),m(v)) (6)

where GRU is the Gated Recurrent Unit. Compared to the in-
ner product kernel, GRU kernel has the advantage of larger
expressive capability. However, GRUs are not symmetric,
as they process their inputs in a sequential way [Hamilton
et al.2017], while the hidden vectors obtained in a molecular
graph are inherently unordered.

Multilayer Perception. Another simple but useful way to
incorporate both the node and edge features is to feed them
into a multilayer perception. By this procedure, messages
in different dimensions of the feature vectors could be inter-
acted. It can be formulated as below:

hk(v) = σ(Wk · CONCAT (hk−1(v),m(v))) (7)

Though several other update functions were mentioned in
[Gilmer et al.2017] [Li et al.2019], we utilized these three
representative and classical update functions in consideration
of the computation cost and complexity.

4 Experiments
4.1 Experiment Setups
Benchmark Datasets. To enable head-to-head comparison
of CMPNN to existing molecular representation methods,
we evaluated our proposed model on six public benchmark

Dataset #Tasks Task Type #Molecule
BBBP 1 Classification 2,039
Tox21 12 Classification 7,831
Sider 27 Classification 1,427

ClinTox 2 Classification 1,478
ESOL 1 Regression 1,128

FreeSolv 1 Regression 642

Table 2: Statistics of datasets.
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Task Classification(ROC-AUC) Regression(RMSE)
Dataset BBBP Tox21 Sider ClinTox ESOL FreeSolv

RF 0.788 0.619 0.572 0.544 1.176 2.048
FNN 0.899 0.788 0.652 0.688 2.152 3.043
GCN 0.690 0.829 0.638 0.807 0.970 1.40

Weave 0.671 0.820 0.581 0.832 0.610 1.220
RGAT 0.875 0.821 0.621 0.841 0.731 1.338

N-Gram 0.890 0.842 - 0.870 0.718 1.371
MPNN 0.910 ± 0.032 0.844 ± 0.014 0.641 ± 0.014 0.881 ± 0.037 0.702 ± 0.042 1.242 ± 0.249

DMPNN 0.917 ± 0.037 0.854 ± 0.012 0.658 ± 0.020 0.897 ± 0.042 0.587 ± 0.060 1.009 ± 0.207
CMPNN-IP 0.955 ± 0.007 0.848 ± 0.005 0.652 ± 0.007 0.910 ± 0.016 0.260 ± 0.011 0.870 ± 0.150

CMPNN-GG 0.955 ± 0.009 0.847 ± 0.005 0.654 ± 0.003 0.920 ± 0.016 0.263 ± 0.012 0.970 ± 0.178
CMPNN-MLP 0.963 ± 0.003 0.856 ± 0.007 0.666 ± 0.007 0.933 ± 0.012 0.233 ± 0.015 0.819 ± 0.147

Table 3: Prediction results of CMPNN, its variants and baselines on six chemical graph datasets. We used a 5-fold cross validation with
random split and replicated experiments on each tasks for five times, and reported the mean and standard deviation of AUC or RMSE values.

datasets, including BBBP, Tox21, ClinTox, and Sider for clas-
sification tasks, and ESOL and Freesolv for regression tasks.

The blood-brain barrier penetration (BBBP) dataset in-
cludes binary labels for over 2040 compounds on their per-
meability properties. The Tox21 dataset was originally used
in the Tox21 data challenge, which contains 7831 experimen-
tal compounds for 12 different targets relevant to drug tox-
icity, including stress response pathways and nuclear recep-
tors. The Sider data set provides information on marketed
drugs and their corresponding adverse drug reactions, where
the side effects of 1427 approved drugs have been grouped
into 27 system organ classes. The ClinTox dataset includes
1491 drug molecules that approved through FDA and a list of
compounds that failed during clinical trials due to the toxicity.
The ESOL dataset consists of 1128 compounds and their cor-
responding water solubility in log10(mol/L). The Free Sol-
vation Database (FreeSolv) comprises experimental and cal-
culated hydration free energy for small neutral molecules in
water. It includes totally 642 molecules which are mostly
fragment-like. The statistics of datasets are shown in Table 2.

Baselines. We compared our CMPNN with 9 baseline
methods. These methods were shown in the MoleculeNet
[Wu et al.2018] , DMPNN [Yang et al.2019], and sev-
eral state-of-the-arts methods. The Random Forests (RF)
[Breiman2001] is one of the most common used machine
learning methods. The input of RF in experiments is the
binary Morgan fingerprints. The FNN is a feed-forward
network that also uses molecular fingerprint features as in-
puts. Besides, we compared our method with four graph
models. GCN [Kipf and Welling2016] and Weave [Kearnes
et al.2016] are two graph convolutional methods by adding
edge attributes as node’s feature. N-Gram [Liu et al.2019]
is a state-of-the-art unsupervised representation method for
molecular property prediction. RGAT [Ryu et al.2018] is an
improved molecular graph neural network by incorporating
attention and gate mechanisms. MPNN [Gilmer et al.2017]
and DMPNN [Yang et al.2019] are two recent message pass-
ing methods operated on undirected and directed graph, re-
spectively.

Implementation Details. Following [Yang et al.2019], we
used a 5-fold cross validation and replicate experiments on

each task for five times, and reported the mean and standard
deviation of AUC or RMSE values. We evaluated all models
on random and scaffold-based splits as recommended by [Wu
et al.2018]. Scaffold Splitting is a more challenging and real-
istic evaluation setting by guaranteeing the Murcko scaffold
diversity of the training validation and test sets. The node and
edge features used in this paper were listed in Supplemen-
tary Information, which are computed by open-source pack-
age RDKit. To improve model performance, we applied the
Bayesian Optimization to obtain the best hyperparameters of
the models. Our models were implemented by Pytorch and
run on Ubuntu Linux 16 with NVIDIA Tesla V100 GPUs.

Figure 4: Comparison of CMPNN against baseline models on chem-
ical graph datasets on a scaffold data split.

4.2 Performance Comparasion
Performance in Graph Classifications. Table 3 shows
the AUC results of seven different baseline models on four
classification datasets. The Tox21, Sider and ClinTox are all
multiple-task learning tasks, including totally 42 classifica-
tion tasks. For our CMPNN model, we also implemented
three variants on the communication function as described in
Section 3.3. For notational convenience we used CMPNN-IP
to denote Inner Product kernel, CMPNN-GG for Gated Graph
kernel and CMPNN-MLP for Multilayer Perception kernel.

Compared to traditional baselines and several primitive
graph neural networks, MPNN achieved large increases of
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(a) MPNN (b) DMPNN (c) CMPNN

Figure 5: t-SNE visualization of atom features for Tox21 subtask extracted from (a) MPNN, (b) DMPNN and (c) CMPNN, where atoms with
toxicity are colored in red and atoms in non-toxic molecules are in blue.

AUCs in almost all datasets, except that it was slightly worse
than FNN in the Sider dataset, while the DMPNN consis-
tently improved over MPNN in four datasets by 0.8-2.7%
with the use of directed message passing. By using the
enhanced node-edge information interactions and message
booster modules, our CMPNN-mlp further improved over
DMPNN with 4.6%, 3.6% and 2.5% for BBBP, ClinTox, and
Sider datasets, respectively.

Generalization Estimation. Over the Tox21 dataset,
CMPNN was only marginally better than DMPNN in Tox21.
This is likely because Tox21 is an extremely imbalanced
dataset, where only 7% of data points are labeled as toxic
compounds. [Mayr et al.2018] reported that this kind of
dataset is prone to be over-fitting and thus may perform worse
in the independent test dataset. For this reason, we introduced
Scaffold Splitting to further evaluate the generalization abil-
ity of different MPNN variants. As shown in Figure 4, the
CMPNN achieved an order-of-magnitude improvement over
MPNN and DMPNN with a scaffold splitting strategy. In
Tox21 task, our CMPNN model improves upon GCN by a
margin of 1.1% for the test set. This result demonstrates that
the CMPNN has a better generalization ability than the previ-
ous MPNNs when the training data set has no similar scaffold
to the test set.

Performance in Graph Regressions. Solubility are one
kind of basic physical chemistry property important for un-
derstanding how molecules interact with solvents. Table 3
compares CMPNN results to other state-of-the-art models re-
sults on two solubility datasets. The best-case RMSE of the
CMPNN model on ESOL and FreeSolv were 0.233 ± 0.015
log M and 0.819 ± 0.147 kcal/mol, which improved upon
DMPNN by a margin of 0.354 logM and 0.190 kcal/mol with
the same fold assignments, respectively. These results indi-
cate that better representations of molecular graphs could be
obtained by the updating of both the vertices and edges mes-
sages in CMPNN during training.

Task Classification Regression
Dataset BBBP ESOL
Without All 0.925 0.453
Without Communicate 0.937 0.361
Without Booster 0.951 0.267
Booster-Attentive 0.956 0.254
CMPNN 0.963 0.233

Table 4: Ablation results on BBBP and ESOL datasets.

4.3 Ablation Study
We conducted ablation studies on the two benchmarks to in-
vestigate factors that influence the performance of proposed
CMPNN framework. As shown in Table 4, CMPNN with the
max pooling booster and communicating modules shows the
best performance among all architectures. The exclusion of
the readout function in the “without ALL” variant performed
the worst. The exclusions of the message booster and node-
edge message communicative function both caused large de-
creases in performances. The use of attentive pooling as the
booster [Veličković et al.2017] is helpful but not as efficient
as max pooling.

4.4 Atomic Representation Visualization.
In chemistry, molecular properties are often associated with
their specific substructures. Thus, recognizing substructures
related to the target property is important to achieve a high
performance. In this regard, we compared the learning ca-
pabilities of three methods in the atomic level. As an exam-
ple of the subtask SR-MMP in Tox21, we selected 100 toxic
molecules containing substructures matched with the PAINS
database [Baell and Holloway2010] (a database containing
more than 400 toxic substructures), and took the matched
substructure atoms as toxic. In control, we selected 100 non-
toxic molecules and took the atoms as non-toxic. Finally, we
obtained 564 toxic and 1367 non-toxic atoms. Figure 5 shows
the toxic (red) and non-toxic atoms (blue) by projecting their
learned atomic feature vectors by the t-distributed stochastic
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neighbor embedding (t-SNE) with default hyper-parameters.
Overall, all methods provid reasonable results. While one
portion of toxic atoms represented by MPNN and DMPNN
are mixed with non-toxic atoms, CMPNN allows more deli-
cate classifications. This result suggests that CMPNN capture
better representations of molecules.

5 Conclusions
In this paper, we propose a directed graph-based Communica-
tive Message Passing Neural Network (CMPNN) to improve
the molecular embedding by strengthening the message inter-
action between atoms and bonds. A message booster module
and a communicative function are introduced to support the
message propagation process. Extensive experiments demon-
strate that our CMPNN obtains superior performances against
state-of-the-art baselines on six chemical graph datasets.
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and H Chen. Building attention and edge message pass-
ing neural networks for bioactivity and physical–chemical
property prediction. Journal of Cheminformatics, 12(1):1,
2020.

[Wu et al., 2018] Zhenqin Wu, Bharath Ramsundar, Evan N
Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a
benchmark for molecular machine learning. Chemical sci-
ence, 9(2):513–530, 2018.

[Xu et al., 2018] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works? arXiv preprint arXiv:1810.00826, 2018.

[Yang et al., 2019] Kevin Yang, Kyle Swanson, Wengong
Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel
Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam
Mathea, et al. Are learned molecular representations ready
for prime time? arXiv preprint arXiv:1904.01561, 2019.

[Zheng et al., 2019a] Shuangjia Zheng, Jiahua Rao,
Zhongyue Zhang, Jun Xu, and Yuedong Yang. Pre-
dicting retrosynthetic reactions using self-corrected
transformer neural networks. Journal of Chemical
Information and Modeling, 2019.

[Zheng et al., 2019b] Shuangjia Zheng, Xin Yan, Yuedong
Yang, and Jun Xu. Identifying structure–property relation-
ships through smiles syntax analysis with self-attention
mechanism. Journal of chemical information and mod-
eling, 59(2):914–923, 2019.

[Zheng et al., 2020] Shuangjia Zheng, Yongjian Li, Sheng
Chen, Jun Xu, and Yuedong Yang. Predicting drug–protein
interaction using quasi-visual question answering system.
Nature Machine Intelligence, 2(2):134–140, 2020.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2838


