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Abstract 

Performance of structure-based molecular docking largely depends on the accuracy of scoring functions. One impor-
tant type of scoring functions are knowledge-based potentials derived from known three-dimensional structures of 
proteins and/or protein–ligand complex structures. This study seeks to improve a knowledge-based protein–ligand 
potential based on a distance-scale finite ideal-gas reference (DFIRE) state (DLIGAND) by expanding the representa-
tion of protein atoms from 13 mol2 atom types to 167 residue-specific atom types, and employing a recently updated 
dataset containing 12,450 monomer protein chains for training. We found that the updated version DLIGAND2 has 
a consistent improvement over DLIGAND in predicting binding affinities for either native complex structures or 
docking-generated poses. More importantly, DLIGAND2 has a 52% increase over DLIGAND in enrichment factors in 
top 1% predictions based on the DUD-E decoy set, and consistently improves over Autodock Vina and other statistical 
energy functions in all three benchmark tests. We further found that DLIGAND2 outperforms empirical and machine-
learning methods compared for virtual screening on new targets that are not homologous to the DUD-E training set. 
Given the best performance as a parameter-free statistical potential and among the best in all performance measures, 
DLIGAND2 should be useful for re-assessing the poses generated by docking software, or acting as one term in other 
scoring functions. The program is available at https ://githu b.com/sysu-yangl ab/DLIGA ND2.
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Introduction
Structure-based molecular docking is one of the key 
components in computer-aided drug design [1–3]. Dock-
ing is a two-step process: conformational sampling of 
ligands bound to their receptors, followed by assessment 
of binding free energy between them. Due to advances in 

computing power and numerical algorithms, the success 
of docking is no longer restricted by inadequacy of con-
formational sampling but limited instead by the lack of a 
precise and reliable scoring function to evaluate the free 
energy of interactions between proteins and ligands [4]. 
Developing an accurate scoring function is challenging 
because molecular interaction is contributed by a delicate 
balance between several different types of interactions 
including van der Waals and columbic interactions in 
between, and interactions with solvent environment in 
addition to the difficulty in capturing entropic contribu-
tions [5, 6].

A wide variety of scoring functions has been developed 
to approximate energy functions. Based on the derivation 
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ways, scoring functions are usually classified into phys-
ics-based methods, empirical scoring functions, knowl-
edge-based potentials, and descriptor-based scoring 
functions [7]. Physics-based methods, widely employed 
in molecular dynamics simulation studies, are obtained 
by combing quantum mechanical calculations of small 
molecular fragments and empirical fitting to known 
experimental data. Some examples are linear interaction 
energy (LIE) [8, 9], linear response approximation (LRA) 
[10] and MM-PBSA/GBSA [11–13]. Since this type of 
methods require intensive computing time to perform 
kinetic integration for entropic effects, they are limited 
to assess a small number of compounds. Differently, vir-
tual screening usually docked millions of molecules into 
a protein receptor to locate active compounds. Thus, the 
requirement of fast computation leads to the dominance 
of computationally efficient empirical scoring functions 
in docking as shown in the score-function assessment 
[5, 6]. Empirical scoring functions are based on a linear 
combination of various energetic terms to approximate 
binding free energy. Notable examples are ChemScore 
[14, 15], X-Score [16], Glide-Score [17, 18], and etc. Typi-
cally, the weight factors for individual energetic terms in 
an empirical scoring function are obtained by regression 
to achieve the highest correlation to experimental bind-
ing affinities (scoring power). More recently, machine 
learning methods have been used to combine energetic 
terms and/or employ protein–ligand distances for train-
ing. Examples are RF-Score [19], ID-Score [20], SVM-SP 
[21], and DrugVQA [22]. However, these scoring func-
tions are often sensitive to docking poses and don’t per-
form well to separate decoys from true binding ligands 
in actual docking experiments [23]. Knowledge-based 
potentials (or statistical potentials) are derived from sta-
tistical analysis of known protein structures. A typical 
knowledge-based potential considers only the distances 
between atom pairs that allow efficient calculations. Dif-
ferent knowledge-based functions differ in how protein–
ligand atom pair potentials and their reference states are 
defined. Examples are SmoG [24, 25], DrugScore [26], 
IT-Score [27, 28], and ASP [29]. Knowledge-based scor-
ing functions are also used in combination with solvation 
and entropic terms to improve performance. Examples 
are DSX [30], SmoG2016 [31] and ITScore/SE [32].

Previously, a knowledge-based scoring function called 
DLIGAND [9] was developed based on the distance-
scaled finite ideal-gas reference (DFIRE) state [33, 34], 
which has successfully been used for protein interactions 
with DNA [35], RNA [36], and carbohydrate [37] mol-
ecules. DLIGAND was developed by representing both 
protein and ligand atoms by a few mol2 atom types, and 
trained on a small set of 200 protein complex structures. 
Here, we developed DLIGAND2 by substituting 13 mol2 

atom types by 167 residue-specific atom types for pro-
tein atoms and using a large protein structural dataset 
for training. We showed that DLIGAND2 not only sig-
nificantly improves over DLIGAND but also has superior 
performance in separating true ligands from decoys in 
Database of Useful Decoys-Enhanced (DUD-E).

Methods
Scoring function
DLIGAND2 potential
We have used the same approach as the DLIGAND [38] 
to derive the distance-dependent interaction energy 
function between atomic pairs based on the distance-
scale finite ideal-gas reference (DFIRE) state [33] as

where R is the gas constant, T = 300  K, α = 1.61, 
rcut = 15  Å, η is a scaling factor simply set as 0.01/RT. 
 Nobs(i,j,r) is the number of atomic pair (i,j) within the 
spherical shell of distance r observed in a given struc-
ture database, and ∆r(∆rcut) is the bin width at r(rcut). A 
constant value of 0.5  Å was used for ∆r at all bins and 
∆rcut = ∆r. Here, we employed residue-specific atomic 
types for protein atoms that leads to 167 atomic types for 
protein atoms. This is different from DLIGAND, where 
both protein and ligand atoms were represented by mol2 
atom types, and thus only 13 atom types were utilized for 
protein atoms.

We derived the protein–ligand interactions from pro-
tein structures because there is only a small number of 
non-redundant protein–ligand complex structures. From 
protein structures, we obtained the  Nobs for the number 
of observed pairs between protein atoms, which are con-
verted to protein–ligand interactions by mapping indices 
for protein atoms to 11 mol2 atom types (see Additional 
file  1: Table  S1) and summing over all pairs that are 
mapped to the same mol2 atom type as

where i is protein atom type, δ
(
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complex structures) used for deriving DLIGAND. For 
ligand mol2 atom types not existed in proteins, they were 
mapped to the closest atom type, as detailed in Addi-
tional file  1: Table  S1. We also adopted the low-count 
correction according to Bayesian statistics as the previ-
ous study [40].

Benchmark datasets
Four benchmark datasets were employed to evalu-
ate DLIGAND2. The first dataset is CASF-2013 [5, 6], a 
widely used benchmark containing 195 representative 
protein–ligand complexes. This benchmark has been 
used to test the accuracy of binding affinity prediction 
by using experimentally determined protein–ligand 
complex structures. The second dataset is the PDBbind 
refined set (version 2016) [41] of 4057 protein–ligand 
interaction pairs with experimentally measured bind-
ing affinity data. We generated protein–ligand complex 
structures by docking ligands onto their correspond-
ing receptors respectively with eight docking packages, 
including AudoDock (version 4.2.6) [42], AutoDock Vina 
(version 1.1.2) [43], rDock (version 2013.1) [44], LeDock 
(version 1.0) [45], UCSF DOCK (version 6.8) [46], iDock 
(version 2013.1) [47], GalaxyDock (with BP2 Score) [48, 
49], and iGEMDOCK (version 2.1) [50]. Docking ligands 
are confined to a 10  Å box enclosing the centroid of 
co-crystalized ligand. The maximum number of dock-
ing poses for each ligand was set to 10. After removing 
complexes failing to yield any complex structures in our 
selected docking programs, a collection of 4044 com-
plexes remained for evaluation. The full list of 4044 com-
plexes can be found in Additional file  2: Table  S2. The 
scoring ability of functions were evaluated by the Pearson 
correlation coefficient (PCC) between the predicted and 
experimental values, as well as the root mean squared 
error (RMSE) after linear regression.

The ability of DLIGAND2 to perform virtual screen-
ing was also evalued on the DUD-E dataset [51]. There 
are 22, 886 active ligands binding with 102 targets, with 
an average of 224 ligands per target. For each target, the 
DUD-E database provides an abundant number of decoys 
(50 decoys for each active) that have similar physical–
chemical properties but dissimilar two-dimensional 
(2D) topology. We employed the 3D structure of a target 
protein with the highest resolution in the protein data 
bank for docking. This is different from original DUD-E 
test where the 3D structure of the best performance was 
selected for each target [51]. For each pair of protein tar-
get and ligand compound, we employed Autodock Vina 
with default options to generate one pose, which are 
re-scored by 5 scoring functions (ΔvinaRF20, ID-Score, 
X-Score, DLIGAND, and DLIGAND2).

The accuracy of each scoring function was evaluated by 
the LogAUC and enrichment factor (EF).

As described in DUD-E Ref. [51] and our previous 
studies [52, 53], LogAUC takes the logarithm of x-axis 
in area under curve (AUC) to show more information on 
enrichment at a low false positive rate. We chose three 
regions of EF in top x% of the DUD-E dataset, where x 
equals to 1, 5 and 10 respectively.

where Nx%
True , N

x%
Selected , Nx%

Selected and NTotal are the num-
ber of true positives, the number of selected candidates 
at top x% screened candidates, the number of active 
compounds, and the total number of compounds in the 
screened library, respectively.

For a fair comparison with the machine-learning-
based scoring function (RF-Score-VS [54]) trained on 
the DUD-E dataset, we selected protein targets from the 
DEKOIS 2.0 benchmark [55] if it has sequence identity 
less than 95% to any protein in the DUD-E according to 
the BLAST [56]. Finally, 55 targets were kept and sorted 
by their sequence identity, as detailed in Additional file 3: 
Table S3.

Results and discussion
The DLIGAND2 potential
Different from the united mol2 atom type used by DLI-
GAND, the improved version DLIGAND2 has employed 
residue-specific types for protein atoms, which expanded 
atom types from 12 types to 169 atom types. Sufficient 
statistics for this larger number of atom types is ensured 
by using 12,450 protein chains for training. Residue-spe-
cific atom types enable the discrimination of the proper-
ties (e.g. partial charge) and surrounding environments of 
atoms. As shown in Fig. 1a, the potential energy between 
ligand atom S.3 and the main-chain O atom of ASP is 
significantly lower than between the atom and the main-
chain O atom of ARG likely because S.3 atom has a weak 
but negative partial charge, which is repulsive to the neg-
ative charged ASP but attractive to the positive charged 
ARG residue. By comparison, DLIGAND provides an 
average potential over 20 amino acids. Significant dif-
ferences also exist for interactions involving non-polar 
atoms. As shown in Fig. 1b, the CB atom of GLU and the 
CE atom of LYS belong to C.3 as defined in mol2, despite 
their very different electrostatic and steric environment. 
Their interactions with the ligand type N.am are very dif-
ferent when derived independently (DLIGAND2), and 
enclose the average energy function from DLIGAND.
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Evaluation results on CASF‑2013 benchmark
Score power
Figure 2 compares DLIGAND and DLIGAND2 in term 
of their ability for predicting protein–ligand bind-
ing affinity using the CASF-2013 dataset. DLIGAND2 
achieves a higher Pearson correlation coefficient (PCC) 
(0.572) than DLIGAND (0.526). Table  1 further com-
pares PCC values given by 29 other scoring functions. 
DLIGAND2 ranks the 9th among 30 scoring functions. 
The improvement of DLIGAND2 over DLIGAND was 
made without additional training. Interestingly, the top 

five scores (RF-Score-v2, ID-Score, ΔvinaRF20, Auto-
Dock-hybrid and X-ScoreHM) were all trained directly 
for binding affinity prediction. The scoring function of 
Autodock Vina achieves a PCC of 0.56, which is lower 
than DLIGAND2 but higher than DLIGAND. Accord-
ing to the root mean square error (RMSE), DLIGAND2 
(RMSE of 1.85) ranks the 10th after ChemPLP@GOLD 
(RMSE of 1.84), which is the best in all knowledge-
based potential functions. The improvement in corre-
lation coefficients is encouraging as DLIGAND2 was 
trained on protein structures only.

Fig. 1 The atomic interaction potentials a between ligand type S.3 and main-chain O atom of ASP, or ARG in DLIGAND2, or their common mol2 
atom type (O.2) by the DLIGAND, and b between ligand type N.am and atom CB of GLU, or CE of LYS, or their common mol2 type “C.3” by DLIGAND, 
as a function of distance

Fig. 2 Comparison between theoretically predicted and experimentally measured protein–ligand binding free energies for 195 complexes on the 
CASF-2013 testing set for a DLIGAND with a correlation coefficient of 0.526 and b DLIGAND2 with a correlation coefficient of 0.572. The solid line is 
from the regression fit
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Docking power
The docking power refers to whether a scoring func-
tion can correctly identify the native ligand poses from 
the predicted poses. Table 2 shows the evaluation results 
of docking power compared to the results by Li et al. [5] 
using the same docking sets in the CASF-2013 bench-
mark. DLIGAND2 achieves 14% improvement in success 
rate over DLIGAND in detecting native poses as the first 
ranked pose. Among all methods compared, DLIGAND2 
has a moderate performance in term of success rates in 
ranking the native pose within top 1, 2, and 3 (at 45.1%, 
61% and 75.4%, respectively). Nevertheless, DLIGAND2 
ranks the second best in all knowledge-based/statistical 
potential scoring functions, behind ASP@GOLD, but 

better than PMF@SYBYL, PMF04@DS and PMF@DS. 
However, ASP@GOLD is not a pure statistical energy 
function but an empirical mix of a statistical potential 
with physical-based energetic terms in ChemScore@
GOLD. Thus, DLIGAND2 has the best performance for 
parameter-free statistical potentials.

Ranking power
The ranking power of a scoring function refers to its abil-
ity to correctly rank binders of a given target protein 
by their predicted binding affinities based on the poses 
from the crystal structures and optimized structures. 
Table  3 compares DLIGAND and DLIGAND2 to the 
evaluation results of other scoring functions of ranking 

Table 1 Comparisons of 30 scoring functions on the CASF-2013 dataset

The results for 23 scoring functions were collected from Li [5], the results for RF-score-v2, ID-score, ΔvinaRF20 and SMoG2016 (labeled as a, b, c, d) were collected from 
Ballester [57], Li [20], Wang [58] and Theau [31], separately, and the results for DLIGAND2, Autodock Vina, and DLIGAND were calculated with default options by 
ourselves

n.a. not available

Function PCC RMSE Description Year

RF-Score-v2 0.803a 1.54 Machine learning 2014

ID-Score 0.753b 1.63 Descriptor-based and empirical 2013

ΔvinaRF20 0.686c 1.64 Machine learning 2016

AutoDockHybrid 0.64 n.a. Force fields and machine learning 2016

X-ScoreHM 0.614 1.78 Empirical 2002

ΔSASA 0.606 1.79 Empirical 2014

ChemScore@SYBYL 0.592 1.82 Empirical 1998

ChemPLP@GOLD 0.579 1.84 Empirical 2009

DLIGAND2 0.572 1.85 Knowledge-based This paper

SMoG2016 0.57d 1.68 Knowledge-based and empirical 2016

PLP1@DS 0.568 1.86 Empirical 2000

AutoDock Vina 0.563e 1.87 Knowledge-based and empirical 2010

G-Score@SYBYL 0.558 1.87 Energy-based 1997

ASP@GOLD 0.556 1.88 Statistical potential 2005

ASE@MOE 0.544 1.89 Empirical n.a.

ChemScore@GOLD 0.536 1.90 Empirical 2003

DLIGAND 0.526 1.92 Knowledge-based 2005

D-Score@SYBYL 0.526 1.92 Energy-based 2001

Alpha-HB@MOE 0.511 1.94 Empirical n.a.

LUDI3@DS 0.487 1.97 Empirical 1998

GoldScore@GOLD 0.483 1.97 Energy-based 1997

Affinity-dG@MOE 0.482 1.98 Empirical n.a.

LigScore2@DS 0.456 2.02 Empirical 2005

GlideScore-SP 0.452 2.03 Energy-based 2006

SMoG2001 0.418 3.39 Knowledge-based 2001

Jain@DS 0.408 2.05 Empirical 2006

PMF@DS 0.364 2.11 Statistical potential 2006

GlideScore-XP 0.277 2.18 Energy-based 2004

London-dG@MOE 0.242 2.19 Empirical n.a.

PMF@SYBYL 0.221 2.20 Statistical potential 1999
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power collected by Li et al. [5]. A high-level success rate 
indicates a completely correct ranking of all members 
within each ligand cluster whereas a low-level success 
rate denotes ranking of the best as top 1 within a clus-
ter. Again, DLIGAND2 has a small improvement over 
DLIGAND in high level success rates (1.6% on crystal 
structures and 3% on optimized structures) but identical 
in low-level success rates. Compared to other statistical 
potentials (PMF@DF, ASP@GOLD, PMF@SYBYL), DLI-
GAND2 has the highest high-level success rate in crys-
tal and optimized structures and the highest low-level 
success rate in optimized structures but not in crystal 

structures. This suggests that DLIGAND2 is less sensi-
tive to structural changes, compared to ASP@GOLD that 
has the large drop in low-level success rate from crystal 
to optimized structures. Empirical scoring functions such 
as X-Score and ChemScore@SYBYL have the best perfor-
mance in this test.

Evaluation results on PDBbind data set
The above benchmark study is based on experimentally 
determined, protein–ligand complex structures. We fur-
ther tested DLIGAND2’s ability to predict protein–ligand 
binding affinities by using predicted complex structures 
from docking. To remove random fluctuations, we gen-
erated 10 poses for each pair of protein and ligand by 
each docking method, and the highest score among 10 
poses by each scoring function was used to represent 
the predicted binding affinity, respectively. As shown in 
Table 4, when scored by docking methods’ own scoring 
functions, AutoDock Vina yields the best correlation and 
lowest error with experimental values (PCC of 0.501 and 

Table 2 Success rates for the evaluation of docking power 
ranked by top three poses

Results (excluding DLIGAND2 and DIGAND) cited from Li [5]. The RMSD value 
between one best-scored binding pose and the native binding pose is less than 
2.0 Å

Scoring function Success rates (%)

The top pose Top two poses Top three poses

ChemPLP@GOLD 81 86.7 89.7

ChemScore@GOLD 77.9 83.1 88.2

GlideScore-SP 78.5 85.6 87.7

ASP@GOLD 71.8 81.5 87.2

LigScore2@DS 76.9 84.1 86.7

PLP1@DS 77.4 84.1 86.2

PLP2@DS 74.4 81.5 86.2

Alpha-HB@MOE 75.4 82.6 86.2

GoldScore@GOLD 71.3 81 85.6

GlideScore-XP 74.4 82.6 85.6

LUDI1@DS 59 75.4 83.1

LUDI2@DS 65.6 75.4 81.5

LigScore1@DS 65.1 74.9 81

Affinity-dG@MOE 63.1 74.9 81

London-dG@MOE 59.5 73.8 78.5

X-ScoreHM 61 73.3 77.9

ChemScore@SYBYL 59.5 69.2 75.4

X-Score 59.5 69.2 75.4

DLIGAND2 45.1 61 75.4

X-ScoreHP 54.4 67.7 73.8

LUDI3@DS 48.7 65.1 72.8

GScore@SYBYL 45.1 61.5 72.3

X-ScoreHS 54.4 66.7 72.3

Jain@DS 48.2 62.1 70.8

PMF@SYBYL 51.8 60 66.7

PMF04@DS 51.8 62.6 66.2

ASE@MOE 51.3 60 63.6

PMF@DS 44.1 52.3 60

DLIGAND 31.3 50.3 60.5

dSAS 21.5 33.3 45.1

DScore@SYBYL 18.5 29.7 42.6

Table 3 Success rates (%) for  the  evaluation of  ranking 
power ranked by  high-level results on  optimized 
structures

Results (excluding DLIGAND2 and DIGAND) cited from Li [5]

Score function Success rates (%) 
on crystal structures

Success rates (%) 
on optimized 
structures

High‑level Low‑level High‑level Low‑level

X-ScoreHM 58.5 72.3 56.9 73.8

ChemScore@SYBYL 53.8 67.7 52.3 69.2

D-Score@SYBYL 49.2 63.1 52.3 63.1

LigScore1@DS 52.3 61.5 50.8 63.1

ΔSAS 49.2 67.7 50.8 69.2

DLIGAND2 50.8 63.1 49.2 64.6

PLP2@DS 55.4 72.3 47.7 67.7

Alpha-HB@MOE 52.3 66.2 47.7 64.6

ChemPLP@GOLD 58.5 72.3 46.2 61.5

G-Score@SYBYL 52.3 72.3 46.2 61.5

DLIGAND 49.2 63.1 46.2 64.6

PMF@DS 49.2 66.2 46.2 63.1

LUDI1@DS 52.3 69.2 44.6 66.2

Jain@DS 41.5 58.5 44.6 63.1

GoldScore@GOLD 55.4 76.9 43.1 66.2

ASE@MOE 40 64.6 43.1 63.1

London-dG@MOE 43.1 60 40 60

ASP@GOLD 47.7 72.3 38.5 60

Affinity-dG@MOE 53.8 66.2 36.9 50.8

ChemScore@GOLD 46.2 63.1 33.8 53.8

GlideScore-XP 35.4 47.7 32.3 46.2

PMF@SYBYL 43.1 61.5 30.8 53.8

GlideScore-SP 43.1 56.9 21.5 38.5
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RMSE of 1.75), followed by GalaxyDock (PCC of 0.487 
and RMSE of 1.75) and iDock (PCC of 0.485 and RMSE 
of 1.75). rDock and UCSF dock have PCC < 0.2 and 
RMSE > 1.95. Low performance by rDOCK and UCSF 
was consistent with a previous study [4].

When re-assessed by DLIGAND2, the PCCs of pre-
dicted binding affinity consistently improve over all eight 
docking methods to the levels from 0.498 to 0.537 with 
an average of 0.523, and the RMSE from 1.69 to 1.76 
with an average of 1.71. This indicates the main bottle-
neck of current docking method is the scoring function, 
as also disclosed in the previous study [4]. By compari-
son, DLIGAND can improve PCC values for five docking 
programs but decrease PCC values for 3 others with an 
average PCC of 0.455 and RMSE of 1.79, which are 13% 
lower and 4.7% higher than DLIGAND2, respectively. 
On the basis of average value, X-Score has a perfor-
mance comparable to DLIGAND2 in PCC but a slightly 
higher error in RMSE. It should be noted that X-Score 
was trained on the complex structures homologous to 
the CASF-2013 benchmark dataset used here, whereas 
DLIGNAD2 was trained only by independent mono-
mer structures. We also noted that DLIGAND2 is about 
5 times faster than X-Score, which takes 2.7 and 13.3 h, 
respectively to complete this dataset (a total of 40,440 
docking poses) by one CPU core of the Intel E5-2692V2 
(2.2 GHz). Here, we did not compare to RF-Score (includ-
ing RF-Score-v4 [59]), ΔvinaRF20 and ID-Score because 
they were trained on the PBDbind refined set.

Evaluation results on DUD‑E data set
The DUD-E dataset is used to examine the ability to 
separate true ligands from decoys, a practically impor-
tant problem in virtual screening. Here, we employed 
the DUD-E dataset to evaluate the screening power of 

scoring functions. The performance of DLIGAND and 
DLIGAND2 is compared to those of three top ranked 
scoring functions in the CASF-2013 benchmark (ID-
Score, ΔvinaRF20, and X-Score) using the poses generated 
by AutoDock Vina.

As shown in the Table  5 (The detailed data can be 
found in Additional file  4: Table  S4), DLIGAND2 
achieved the best performance with an average logAUC 
of 10.14% and enrichment factors of 6.67 for  EF1%. DLI-
GAND2 achieved an average  EF1% of 30% higher than 
Autodock Vina, 52% and 64% higher than DLIGAND and 
X-Score, separately, and above 3 times higher than ID-
score. The logAUC and enrichment factors of all targets 
are detailed in Additional file 4: Table S4. Notably, Auto-
dock Vina ranks the 2nd by LogAUC and the first on  EF5% 
and  EF10%, with  EF1% of 26% and 86% higher than those 
by X-Score, and ID-Score despite the fact that they can 
provide higher correlation coefficients than Autodock 
Vina to experimental binding affinities in the CASF-2013 
dataset. This is likely because ID-Score and X-Score were 
all trained by the PDBbind dataset that are homologous 
to CASF-2013 dataset. The over-training issues in empir-
ical or machining learning based scoring functions have 

Table 4 Pearson correlation coefficients and  root mean squared error between  experimental binding affinity 
and  binding affinity predicted by  DLIGAND, DLIGAND2, and  X-Score using docking poses generated by  eight docking 
programs along with the results from the docking programs

Docking program Pearson correlation coefficient Root mean squared error

Self DLIGAND DLIGAND2 X‑Score Self DLIGAND DLIGAND2 X‑Score

AutoDock 0.404 0.465 0.537 0.547 1.91 1.77 1.69 1.68

AutoDock Vina 0.501 0.459 0.519 0.536 1.74 1.78 1.72 1.69

rDock 0.102 0.463 0.535 0.507 2.01 1.78 1.70 1.76

LeDock 0.426 0.457 0.532 0.54 1.82 1.78 1.69 1.69

UCSF DOCK 0.195 0.427 0.498 0.488 1.97 1.81 1.74 1.76

iDock 0.485 0.461 0.522 0.54 1.75 1.78 1.71 1.69

GalaxyDock 0.487 0.464 0.537 0.532 1.75 1.78 1.69 1.71

iGEMDOCK 0.384 0.444 0.501 0.502 1.85 1.80 1.76 1.82

Average 0.373 0.455 0.523 0.524 1.85 1.79 1.71 1.73

Table 5 The performance of  six scoring functions 
on the DUD-E dataset

The highest values in each column are labeled italics

Scoring functions LogAUC(%) EF1% EF5% EF10%

DLIGAND2 10.14 6.67 3.31 2.55

AutoDock Vina 9.96 5.12 3.41 2.60

ΔvinaRF20 9.00 6.38 3.41 2.58

DLIGAND 7.61 4.40 2.74 2.23

X-ScoreHM 7.25 4.06 2.68 2.19

ID-Score 2.47 1.61 1.42 1.36
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also been observed in several previous studies [23]. The 
improvement of DLIGAND2 relative to Autodock Vina is 
more consistent in this independent test. As for RF-Score, 
the general version (RF-Score v3) for predicting binding 
affinity doesn’t achieve a good performance with 5.42 for 
 EF1% [53], ranking even behind DLIGAND. Although RF-
Score-VS version specifically trained based on DUD-E 
was reported to achieve  EF1% values up to 38.96 [53], the 
per-target cross validation tends to have an over-estimate 
due to protein homologs between training and test sets 
[60]. We will employ an external DEKOIS 2.0 dataset to 
evaluate DLIGAND2 and RF-Score-VS separately below.

To further compare the performance of each scoring 
function for different protein categories, 102 targets of 
DUD-E dataset are separated into eight categories and 
evaluated by the average  EF1% as shown in Table 6. DLI-
GAND2 has the highest values of  EF1% in Cytochrome 
P450, GPCR, Kinase, and Protease. Especially in the cat-
egory of GPCR and Kinase, DLIGAND2 has obvious 
advantages compared with other scoring functions by 
2.03 times and 1.42 times better than the second ranked 
methods (ΔvinaRF20 and DLIGAND), respectively. By 
comparison, AutoDock Vina performs the best in the 
ion channel, and is far superior to DLIGAND. The scor-
ing function ΔvinaRF20 performs the best in miscellane-
ous, nuclear receptors and other enzymes. DLIGAND2 
doesn’t perform well in targets of kinesin-like protein 1 
(KIFF11, miscellaneous) and poly (ADP-ribose) polymer-
ase-1 (PARP1, other enzymes), likely because their bind-
ing ligand contains halogen and phosphate elements that 
don’t appear in training protein chains. Currently, DLI-
GAND2 simply treats phosphate elements equivalent to 
the sulfate atom type. This issue may be solved in future 
study by including additional ligand atoms from protein–
ligand complex structures.

Among the best examples of DLIGAND2 perfor-
mance, we plotted the receiver operating characteristic 

(ROC) for the case of PTN1 protein (protein-tyrosine 
phosphatase 1B). As shown in Fig.  3, DLIGAND2 has 
the highest area under the curve (AUC) of 0.769, fol-
lowed by AutoDock Vina (0.75), X-Score (0.729) and 
DLIGAND (0.639). The differences are more significant 
at lower false positive rate, the most important region 
for virtual screening. Indeed, the  EF1% are 28.89, 9.12, 
18.32, 9.33 and 9.33 for DLIGAND2, Autodock Vina, 
ΔvinaRF20, DLIGAND and X-Score, respectively. The 
AUC of ID-Score is 0.553, close to 0.5 by the random 
selection.

Evaluation results on DEKOIS 2.0 data set
To compare with the latest RF-Score-VS v2 (https ://githu 
b.com/oddt/oddt) scoring function that was trained on 
the DUD-E, we have compiled a new dataset from the 
DEKOIS 2.0 benchmark, with all targets sorted according 
to their sequence identity to the DUD-E targets according 

Table 6 Enrichment factor values  (EF1%) by  DLIGAND2, AutoDock Vina, ΔvinaRF20, DLIGAND, X-ScoreHM, ID-Score 
on eight protein categories

Italic fonts highlight the highest value in each category

DLIGAND2 Vina ΔvinaRF20 DLIGAND X‑ScoreHM ID‑Score

Cytochrome P450 6.48 1.93 3.77 5.10 3.59 0.56

GPCR 8.46 2.48 4.17 3.79 1.56 1.49

Ion channel 0.84 4.47 3.48 0.51 0.00 0.83

Kinase 10.01 6.10 7.50 4.41 5.93 1.04

Miscellaneous 6.89 5.65 7.82 6.63 4.46 5.36

Nuclear receptors 5.42 9.14 9.57 4.57 4.01 1.69

Other enzymes 3.23 3.88 4.76 2.52 2.64 1.21

Protease 10.16 4.63 6.99 8.65 5.58 2.57

Average 6.43 4.79 6.01 4.52 3.47 1.84

Fig. 3 Receiver operating characteristic (ROC) curves for the target 
PTN1 protein by different scoring methods

https://github.com/oddt/oddt
https://github.com/oddt/oddt
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to the blastpgp. Figure 4 plots the average enrichment fac-
tor  (EF1%) as a function of the number of targets sorted 
according to sequence identity. The average  EF1% for RF-
Score-vs increases as the sequence identity increases, sug-
gesting the performance of RF-Score-VS v2 is strongly 
depending on similarity to its training set. AutoDock 
Vina also has some dependence on similarity to DUD-E 
targets. By comparison, DLIGAND and DLIGAND2 have 
the least dependence except when the number of targets 
is low (< 10) likely due to natural fluctuations. DLIGAND2 
has the highest performance when homologous targets 
are excluded for sequence identity less then 30% with an 
average  EF1% at 5.72, compared to 2.34 by AutoDock Vina, 
2.73 by RF-Score-VS and 3.25 by DLIGAND.

Conclusion
We have developed a new knowledge-based scoring 
function DLIGAND2 by extending to 167 atom types 
for protein atoms from 13 types in the original DLI-
GAND. Residue-specific atom types for proteins allow a 
more accurate description of the interaction of a ligand 
atom with different residues. To ensure sufficient statis-
tics, DLIGAND2 is based on an updated non-redundant 
dataset of 12,450 protein chains, 62 times bigger than the 
dataset (195 structures) used in the original DLIGAND.

DLIGAND2 consistently improves over DLIGAND 
in binding affinity prediction using either native or 
docking-predicted complex structures. The improve-
ment in Pearson correlation coefficient is 8.7% for the 
CASF-2013 dataset by using native complex structures 
and 15% for the PDBbind dataset by using predicted 

complex structures. In addition, DLIGAND2 has sig-
nificantly higher enrichment than DLIGAND in dis-
criminating true ligands from decoys using the DUD-E 
dataset according to re-ranking of docked structures. 
These results suggest the usefulness of expanding protein 
atomic types in generating the DLIGAND 2 statistical 
potential.

DLIGAND2 is the best knowledge-based energy 
score but not as accurate as a few empirical (X-Score) 
or machine-learning based (RF-Score-v2 and ID-Score) 
scores trained by CASF-2013 or PDBbind. The X-Score 
and ID-Score methods outperform Autodock vina in 
the CASF-2013 and PDBbind, but they all have lower 
performance in decoy discrimination, a practically 
more important problem. We have also shown that the 
performance of RF-score-vs strongly depends on the 
sequence identity of the target protein to the dataset for 
training the method. Though RF-score-vs was reported 
to perform well in the DUD-E that includes many 
homologous proteins to its training set, it doesn’t per-
form well on protein targets that are not homologous 
to its training set. By comparison, DLIGAND2 was 
derived from only protein monomer structures, ensur-
ing a balanced performance for all targets. Considering 
the simplicity and fast computation, DLIGAND2 will 
be useful for re-scoring after docking, or being included 
as a term for other scoring functions.

Additional files

Additional file 1: Table S1. Showed 13 mol2 atom types mapped to 167 
residue-specific atom types for protein atoms.

Additional file 2: Table S2. It contained the list of the 4044 complexes 
collected from PDBind refined data set.

Additional file 3: Table S3. The  EF1% values of four scoring functions on 
DEKOIS 2.0 data set are shown.

Additional file 4: Table S4. The logAUC and EF (1%, 5% and 10%) values 
of six scoring functions on the DUD-E dataset are listed.
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