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Abstract

Alternative splicing can be disrupted by genetic variants that are related to diseases

like cancers. Discovering the influence of genetic variations on the alternative splicing

will improve the understanding of the pathogenesis of variants. Here, we developed a

new approach, PredPSI‐SVR to predict the impact of variants on exon skipping events

by using the support vector regression. From the sequence of a particular exon and

its flanking regions, 42 comprehensive features related to splicing events were

extracted. By using a greedy feature selection algorithm, we found eight features

contributing most to the prediction. The trained model achieved a Pearson

correlation coefficient (PCC) of 0.570 in the 10‐fold cross‐validation based on the

training data set provided by the “vex‐seq” challenge of the 5th Critical Assessment

of Genome Interpretation. In the blind test also held by the challenge, our prediction

ranked the 2nd with a PCC of 0.566 that demonstrates the robustness of our method.

A further test indicated that the PredPSI‐SVR is helpful in prioritizing deleterious

synonymous mutations.

The method is available on https://github.com/chenkenbio/PredPSI‐SVR.
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1 | INTRODUCTION

Human genes often express pre‐mRNAs containing multiple introns and

exons. Usually, introns will be spliced out with exons that are connected

to form mature mRNAs. The alternative splicing of exons allows pre‐
mRNA to be spliced into diverse mature mRNAs (G.‐S. Wang & Cooper,

2007). Thus, alternative splicing greatly contributes to the complexity of

the human genome, and allows to generate protein isoforms with

different functions expressed from one gene (Baralle & Giudice, 2017).

The changes of alternative splicing have been widely known to relate to

human diseases, and even cancers (Climente‐González, Porta‐Pardo,
Godzik, & Eyras, 2017). For example, variants occurring around splice

sites can cause Birt‐Hogg‐Dubé syndrome, cystic fibrosis, Duchenne

muscular dystrophy, and others (Anna & Monika, 2018; Furuya et al.,

2018). Importantly, many synonymous mutations happening in exons that

do not change encoded proteins were found to influence gene functions

(Goodman, Church, & Kosuri, 2013; Parmley, Chamary, & Hurst, 2006), or

act as driver mutations in cancers due to their associations with splicing

changes (Supek, Miñana, Valcárcel, Gabaldón, & Lehner, 2014).

Genetic variants that affect splicing events usually alter splicing

signals in pre‐mRNAs. The most fundamental splicing signals are located

in 5′ splice sites, 3′ splice sites, and branch point sequences (Will &

Lührmann, 2011). Usually, 5′ splice sites start with “GU” and 3′ splice
sites end with “AG,” marking the beginning and end of introns,

respectively. On the other hand, branch point sequences locate near

the upstream of 3′splice site in introns, which helps to form lariat‐like
intermediates for introns that are spliced out. In addition, splicing

regulatory elements are also required to precisely identify splice sites

existing in exons and introns, including exonic splicing enhancer and

silencer (ESE/ESS), intronic splicing enhancer and silencer. These
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regulatory elements are short sequences in pre‐mRNAs that can

modulate alternative splicing by interacting with regulatory proteins

(Wang & Burge, 2008). Apart from splicing signals in pre‐mRNA

sequences, the secondary structure of pre‐mRNAs can affect splicing as

well (McManus & Graveley, 2011).

A common form of alternative splicing in mammals is exon skipping,

where an exon will be spliced into mature mRNA or skipped entirely

(Katz, Wang, Airoldi, & Burge, 2010). The skipping event of an exon is

often measured by the percentage of the exon to be spliced in, namely

PSI orΨ, and the difference ofΨ (ΔΨ) can be used to quantify the change

of exon splicing. To quantify the alternative splicing, Xiong et al. (2015)

used a high‐throughput sequencing technique to measure genome‐wide
exon splicing, fromwhich they have designed a method SPANR to predict

Ψ based on a deep Bayes network. Though the method was able to

obtain ΔΨ by predicting Ψ values individually for wild‐type (WT)

sequences and their genetic variants, the indirect way to predict ΔΨ is

usually less accurate compared to methods specifically designed for the

prediction. At the same time, Rosenberg, Patwardhan, Shendure, & Seelig

(2015) designed a new method HAL to predict ΔΨ by using hexamer

motifs of splicing patterns trained from more than two million synthetic

mini‐genes. However, the method can only make predictions for variants

occurring in exons or splice donors (introns within 6 bp from the 5′ splice
sites), but not in other regions. In addition, this method does not consider

other affecting factors.

Recently, Adamson, Zhan, & Graveley (2018) used a novel experi-

mental technique, variant exon sequencing (vex‐seq), to measure the

impact of genomic variants on alternative splicing that are hard to be

detected by traditional approaches using poly(A)+RNA‐seq alone. Vex‐
seq adopts a barcoding approach and is able to detect variants in exons

and flanking introns. This method was applied on 2,059 variants, and has

produced a precise data set for ΔΨ caused by each variant. On the data

set, the method SPANR achieved a low correlation while the method HAL

could not make predictions for mutations outside exons and donor

regions. Thus, this Vex‐seq data set is valuable for developing an accurate

model for predicting ΔΨ .

Here, we present a new method (viz., PredPSI‐SVR) that uses support
vector regression for predicting ΔΨ caused by variants. This method was

trained on selected features, including DNA sequence, DNA conservation

score, splicing site, splicing regulatory elements, and mRNA secondary

structure. The 10‐fold cross‐validation test indicated that the method

outperformed SPANR. It was ranked the 2nd with a Pearson correlation

coefficient (PCC) of 0.566 on the blind prediction for vex‐seq competition

among the 5th Critical Assessment of Genome Interpretation (CAGI). The

additional experiments indicated that PredPSI‐SVR is helpful for

prioritizing pathogenic synonymous mutations.

2 | MATERIALS AND METHODS

2.1 | Changes of alternative splicing (ΔΨ)
The expression level of an alternative exon can be quantified by the

fraction of mRNA containing the exon, which is denoted as PSI (Ψ)

Ψ =
+

⁎
inclusion reads

exclusion reads inclusion reads
100%,

where inclusion reads are counts of sequenced fragments aligned to

the exon or its junctions with adjacent exons, and exclusion reads are

the counts aligned to junctions supporting the exon's exclusion. The

inclusion of an exon in the alternative splicing may be affected by

genetic variants, especially those occurring around the junction sites.

To study the effects of variants on junction sites, the change of Ψ

(ΔΨ) was commonly computed as the differences of Ψ between the

wild‐type and their variants.

2.2 | Vex‐seq data set

All data of variants and their causing ΔΨ was downloaded from the

CAGI official website (URL: https://genomeinterpretation.org/

content/vex‐seq). The data set was sequenced by a barcoding

approach of variant exon sequencing (Vex‐seq), and has been

provided by the CAGI 5 organizer to assess methods for the

prediction of genomic variants affecting exon splicing. The data set

consists of 957 variants distributed on the chromosomes 1 to 8 for

model training, namely TR957, and 1,098 variants on the chromo-

somes 9 to X for the test, namely TS1098. Each variant locates in

either a central exon or the flanking intronic region. The CAGI

competition is a blind test, where the experimental results of ΔΨ in

the test set were released after all predictions have been submitted

by participants. Therefore, TS1098 is a strictly independent test set

for our method.

2.3 | Features

All variants in the Vex‐seq data set were annotated by ANNOVAR

(Wang, Li, & Hakonarson, 2010) to determine their locations in exons.

For each exon, genome sequence was fetched to cover the exon and

its flanking regions of 300 nt up‐ and downstream, from which 42

features were extracted including six splice site motif features, eight

splicing regulatory elements, two pre‐mRNA secondary structures, Ψ,

17 CADD annotations, ΔΨSPIDEX , and seven features for variants

location or codon (Detailed in Table S1). In short, the splice site motif

features were calculated by MaxEntScan (Yeo & Burge, 2004), which

was applied to scoring 5′ splicing site and 3′splicing site in the WT

and mutant (MT) sequences, respectively. These scores were denoted

as MES , MES , MES , and MES5WT 3WT 5MT 3MT, respectively. The differ-

ences of MES between the MT and the WT sequences were derived

from 5′ and 3′ splicing sites and denoted as Δ ΔMES and MES5 3.

The splicing regulatory elements used in our models include ESE

SR‐protein SF2/ASF from ESEfinder (Smith et al., 2006), ESS FAS‐
hex3 hexamer from FAS‐ESS (Wang et al., 2004), and putative ESE

and ESS pESE/pESS (Zhang, Kangsamaksin, Chao, Banerjee, & Chasin,

2005). These features were scored using scripts provided by SilVA

program (Buske, Manickaraj, Mital, Ray, & Brudno, 2013). As SilVA

was designed for only synonymous mutations, we slightly modified
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the scripts so that they can be applied to other single‐nucleotide
variants (SNVs) or indels, in exons or introns.

Pre‐mRNA secondary structure features include change of free

energy (ΔΔG) calculated by UNAfold 3.8 (Markham & Zuker, 2008)

and ensemble diversity change (Δ )D calculated by ViennaRNA 2.4.4

(Lorenz et al., 2011).

The Ψ values used in the CAGI challenge data set were provided

by the CAGI organizers. To be able to make predictions on datasets

without available Ψ values, we calculated Ψ for other exons by using

the program MISO 0.5.4 (Katz et al., 2010) over the Human BodyMap

2.0 project (NCBI GSE30611). As the Human BodyMap 2.0 project

provides raw RNA‐seq data across 16 human tissues, we have

separately computed Ψ for each tissue sample to avoid biases to

tissues. The alignment of paired‐end reads to the reference genome

(hg19) was performed by BWA‐MEM 0.7.17 (Li & Durbin, 2009).

Since the RNA‐seq data has a low sequencing depth, MISO cannot

obtain Ψ for most exons, and we calculated the average over

available tissues for each exon. Finally, we obtained Ψ of 33922

exons, covering about 2.7% of all exons according to the GENCODE

GRCh37 gene annotation file (Frankish et al., 2019).

CADD annotation features were extracted from the annotation

for variants by CADD (Kircher et al., 2014), which contain DNA

conservation scores, histone methylation levels and other sequence

features. ΔΨSPIDEX is a precomputed ΔΨ score provided by the

SPANR (Xiong et al., 2015). The missing values from SPIDEX were

simply filled with zero. We also defined another seven features to

describe variants' locations and whether they will introduce stop

codons, but they were not chosen by the feature selection.

2.4 | Support vector regression

We trained regression models by the support vector regression

implemented in the LIBSVM 3.23 package (Chang & Lin, 2011).

LIBSVM is a user‐friendly SVM package designed for training SVM

model as well as feature scaling, hyperparameter tuning, etc. In this

study, ε‐SVR in the package and radial basis function (RBF) were

selected as the kernel function for the SVM regression. This model

has two hyperparameters: the cost parameter C and the gamma (γ ) of

RBF kernel. To find the best value combination of these two

hyperparameters, we adopted a grid search strategy that tests on

each combination of ∈ { ⋯ }− −C 2 , 2 , , 25 3 11 and γ ∈ { ⋯ }− −2 , 2 , , 211 9 3 .

2.5 | Feature selection

A greedy feature selection algorithm was used as in the previous study

(Zhao et al., 2013). In the selection process, we selected the first feature

with the highest PCC and used it as the first optimal subset of features.

Based on the optimal subset, we scanned all remaining features by

adding them individually, and added to the optimal subset with the

feature that could mostly improve the accuracy of predicting results.

This continued until there was no more feature that could increase

performance. During this procedure, we used a 10‐fold cross‐validation
(CV) strategy to evaluate the performance of models, where all variants

were randomly separated into 10‐folds. Here, variants from the same

gene were put into the same fold to avoid sharing gene information

between the training and validation sets (Zhao et al., 2018). Every time,

nine folds were used for training, and the left fold was used for

prediction. This process was repeated for 10 times, and all prediction

results were collected to calculate the PCC between predicted ΔΨ with

experimental values.

2.6 | Synonymous mutation datasets

The change on the alternative splicing was found to be one important

factor for pathogenic synonymous mutations (Livingstone et al.,

2017). To further test our model and evaluate the relationship

between changes on alternative splicing and diseases, we compiled a

synonymous mutation data set consisting of both pathogenic and

normal mutations. The pathogenic synonymous mutations were

downloaded from dbDSM (Wen, Xiao, & Xia, 2016), which is a

database for deleterious synonymous mutations collected from

public databases and literatures. We first removed duplicate and

invalid records, and then converted the chromosome annotation

from hg38 to hg19 assembly by using the CrossMap (Zhao et al.,

2014). The normal synonymous mutations were obtained from the

1000 Genomes Project (The 1000 Genomes Project Consortium,

2015) with an allele frequency ranging between 0.1 and 0.9. We

further removed mutations that are more than 300 bp away from the

nearest splice site, leading to 890 pathogenic and 14030 normal

synonymous mutations. By applying SPANR and MaxEntScan on

these synonymous mutations, there were 133 pathogenic and 3,208

normal mutations having no SPANR score and we removed these

mutations from the data set. Finally, 757 pathogenic and 10822

normal mutations remained, namely SynonMut‐complete.

Since our method PredPSI‐SVR requires an input of Ψ, we

mapped the synonymous mutations to exons. After excluding

mutations in the exons having no experimental Ψ , we obtained a

subset consisting of 87 pathogenic and 826 normal synonymous

mutations, namely SynonMut‐psi. This data set is 8.7 and 13.1 times

smaller than SynonMut‐complete in the pathogenic and normal

mutations, respectively.

3 | RESULTS AND CONCLUSION

3.1 | Feature analysis

We first computed the PCC between individual features and PSI

change (ΔΨ). As PCC ranges from −1 to 1 with a negative PCC value

indicating negative correlation, features were sorted according to the

absolute value of PCC values. Table 1 listed nine most important

features with an absolute value of PCC greater than 0.1 in the

training set TR957. MES scores are a group of most relevant features

with five types of MES score features being in the list. ΔMES5 was the

most correlated feature, and ΔMES3, MES3MT, MES5MT, and MES3WT

ranked the 3th, 4th, 6th, and 8th respectively. MES score was

designed to reflect the strength of splice site junction, where a lower
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MES score indicates that the exon is more likely to be interfered by

splicing variants (Eng et al., 2004). The second most important

feature was ΔΨSPIDEX , originally developed for predicting ΔΨ in the

previous study (Xiong et al., 2015), which were obtained from the

prescored database of the ANNOVAR package (Wang et al., 2010).

The fifth important feature “dist‐Splice” was the distance of the

variant separated from the nearest splice site (5′ or 3′ site). The

seventh feature verPhyloP was the phyloP conservation score for

vertebrate animals. The last one was GC, which stands for percent

GC (guanine‐cytosine) in a window size of 75 bp. GC and the

verPhyloP were extracted from annotations of CADD. Since pre‐
mRNA structure was reported to affect splicing (Lin, Taggart, &

Fairbrother, 2016), we have evaluated both the free energy change

and structural ensemble diversity change measured by both

UNAFold 3.8 and ViennaRNA 2.4.4, but they showed only weak

correlations with ΔΨ, with the highest PCC of 0.032 by the free

energy log change(ΔΔG) computed from the UNAfold 3.8.

3.2 | Model training and feature selection

We have used a greedy feature selection algorithm to select effective

features from all 42 features by using 10‐fold cross‐validation over

the training set. As shown in Figure 1, the PCCs by the 10‐fold CV

gradually increase with the addition of features and reach the highest

value of 0.570 by eight features. Further addition of features

decreased the performance. In the independent test set, the input of

eight features consistently gave the highest PCC, though there is a

slight drop in PCCs with three to five features. The most important

feature is the ΔMES5 that individually shows the highest correlation

(PCC = 0.402) with the ΔΨ. The other two scores (Δ )ΔΨMES , SPIDEX3

gave strong correlation with ΔΨ individually, and the remained five

features (ESE feature SR protein loss [SR‐], MES5WT, conservation

score feature priPhyloP, WT Ψ, and minDistTSS [distance to

closest transcript start]) were individually indicated weak correla-

tions with ΔΨ . As shown in Table 2, the combination of these five

features and ΔΨSPIDEX can increase the PCC of model predictions

from 0.503 to 0.570. In the independent test, the PCC increases

from 0.322 by combining two features from MaxEntScan to 0.516,

and to 0.566 by (PredPSI‐SVR) combining eight features. At the

same time, the removal of individual features consistently shows a

decrease of PCC, with the largest drop from ΔMES5, and the

smallest from the ΔΨSPIDEX . This is probably because the

information of ΔΨSPIDEX has been partially covered by other

features. Figure 2 shows a comparison between experimental ΔΨ

and the predicted ΔΨ by PredPSI‐SVR and ΔΨSPIDEX . Surprisingly,

when we prepared the final server version, we found the removal

of priPhyloP and minDistTSS obtained from the CADD leads to

slight increase in PCCs of both the 10‐fold CV and independent

tests compared to the full model with eight features: increase from

0.570 to 0.590 in the 10‐fold CV, and from 0.566 to 0.577 in

independent test. This indicates the limit of our current greedy

TABLE 1 Top features with the greatest absolute values of
Pearson correlation coefficients (PCC) to the ΔΨ computed in the
training set TR957

Rank Feature PCC (TR957) PCC (TS1098)

1 ΔMES5 0.402 0.348

2 ΔΨSPIDEX 0.270 0.241

3 ΔMES3 0.263 0.425

4 MES3MT 0.186 0.152

5 dist‐Splice 0.176 0.167

6 MES5MT 0.167 0.084

7 verPhyloP −0.128 −0.080

8 MES3WT 0.111 −0.019

9 GC 0.108 0.030

Note. Features with absolute values greater than 0.1 are listed. Their

PCCs in the test set TS1098 are listed in the last column.

Abbreviations: GC, guanine‐cytosine; PCC, Pearson correlation coefficient.

F IGURE 1 The growth of PCC as the number of features

increases. The solid line shows the results of 10‐fold cross‐validation
on the training set, and the dashed line for the independent test set.
CV, cross‐validation; PCC, Pearson correlation coefficient

TABLE 2 Performances of models by incremental addition of
features, or by removing each feature from the final model tested on
the training data set (10‐fold cross‐validation)

Features

addeda PCC

Feature

excludedb PCC

Final model 0.570

ΔMES5 0.414 ‐ΔMES5 0.444

+ΔMES3 0.503 ‐ΔMES3 0.482

+SR‐ 0.518 ‐SR‐ 0.555

+MES5WT 0.524 ‐MES5WT 0.542

+priPhyloP 0.537 ‐priPhyloP 0.545

+ ΔΨSPIDEX 0.548 ‐ ΔΨSPIDEX 0.565

+Ψ 0.556 ‐Ψ 0.508

+minDistTSS 0.570 ‐minDistTSS 0.556

aPerformance by incremental addition of each feature.
bPerformance by removing each feature from the final model.
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F IGURE 2 Comparison of predicted ΔΨ by (a) PredPSI‐SVR and (b) ΔΨSPIDEX (SPANR method) and experimental values on the
independent test set TS1098. PCC, Pearson correlation coefficient

F IGURE 3 ROC curves for PredPSI‐SVR, PredPSI‐SVR‐noPSI, SPANR an MaxEntScan on (a) SynonMut‐PSI data set and

(b) SynonMut‐complete data set. PredPSI‐SVR does not appear in the 2nd plot because the data set consists of mutations on exons without
experimental PSI values. ROC curves for different methods on mutations (c) with MaxEntScan scores or (d) without MaxEntScan scores were
also shown. ROC, receiver operating characteristic curves
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feature selection algorithm. Therefore, our final server version

(PredPSI‐SVR) was trained by using six features over a combina-

tion of training and test sets from the CAGI.

The CAGI provides experimental Ψ for a small portion of exons,

and MISO cannot compute Ψ for all exons. For general use where

exons do not have Ψ values, we have built another model, PredPSI‐
SVR‐noPSI without using the Ψ. The model achieved lower

performance with PCCs of 0.525 and 0.479 on the 10‐fold CV of

the training set and the independent test set, respectively.

3.3 | The prioritization of pathogenic synonymous
mutations

The PredPSI‐SVR model was further utilized to prioritize pathogenic

synonymous mutations, and compared with SPANR and MaxEntScan.

For PredPSI‐SVR and SPANR, we directly used the absolute values of

predicted ΔΨ. For MaxEntScan, we took the sum of the absolute

values of ΔMES5 and ΔMES3 to obtain information for both 5′ and 3′
splicing sites. These scores were used to distinguish pathogenic

mutations from normal ones. Mutations with a score above a

threshold will be classified as pathogenic. As shown in Figure 3, we

plotted the receiver operating characteristic curves (ROC) by the

PredPSI‐SVR, SPANR, and MaxEntScan methods on the SynonMut‐
PSI data set. PredPSI‐SVR performs the best, whereas SPANR

performs the worst that is close to random on the data set. As shown

in Table 3, the area under ROC (AUC) indicates that PredPSI‐SVR is

significantly better than SPANR (p value = .036), and 6.6% higher

than MaxEntScan. The PredPSI‐SVR‐noPSI without an input of

experimental Ψ has a big drop in the AUC (from 0.579 to 0.508)

likely due to the small data set. On the larger SynonMut‐complete

dataset, PredPSI‐SVR‐noPSI achieves an AUC of 0.575, which is

significantly better than the SPANR and MaxEntScan with p values of

.004 and .049, respectively according to the statistical test (Hanley &

McNeil, 1982). The Hanley & McNeil test is a statistical method for

testing whether there is a significant difference between two AUC

values. These results also indicate that our predictions on changes of

alternative splicing can help in prioritizing pathogenic synonymous

mutations. At the region of low FPR (FPR < 0.1), the curve of

MaxEntScan is slightly above the one for PredPSI‐SVR though

MaxEntScan is an input feature for the PredPSI‐SVR model. This is

likely because our method was optimized for the overall performance

that has brought down the results in this region. The problem may be

overcome by using other machine learning algorithms like XGBoost

(Chen & Guestrin, 2016) or a bigger training data set. In addition, we

divided the SynonMut‐complete data set into two portions: 555

mutations within the scanning scope of MaxEntScan and the

remaining 11,024 mutations. For the first portion, our model has

essentially the same performance as MaxEntScan (Figure 3c), while

for the remaining mutations without MaxEntScan scores, our model

achieves an AUC of 0.536 that is significantly better than the AUC

(=0.501) by SPANR with a p value of .018 (Figure 3d). These suggest

that our model can utilize additional features in addition to the

MaxEntScan scores.

4 | DISCUSSION

In this study, we present a new method, namely PredPSI‐SVR to

predict the change of exon splicing caused by genetic variants.

PredPSI‐SVR is a support vector regression model that integrates

features of splice sites, splicing regulatory elements, DNA conserva-

tion score, ΔΨSPIDEX provided by SPANR, and Ψ of WT exons to

predict ΔΨ. The method achieved PCCs of 0.570 and 0.566 for the

10‐fold CV on the training data set and strictly independent test set,

respectively. This performance is significantly better than the

performance (PCC = 0.24) by SPANR's ΔΨSPIDEX .

To build such a model, we extracted 42 features at first and

analyzed their correlations with ΔΨ. We found that features on

splicing sites computed by MaxEntScan have the highest correlations.

The model trained by the ΔMES5 and ΔMES3 can achieve a PCC of

about 0.51 on the test set, indicating the importance of variants

around splice sites to affect the alternative splicing. By using greedy

feature selection, the model built from eight selected features

increased the PCCs from 0.503 to 0.570 on training set and from

0.516 to 0.566 on test set. Five among eight selected features

individually shows weak correlations with ΔΨ (|PCC| < 0.1), indicating

importance to extract comprehensive features.

Our method ranked the 2nd in the CAGI challenge, and it is of

interest to compare with other methods. According to the descriptions of

the prediction methods, available at https://genomeinterpretation.org/

content/vex‐seq, two groups (groups 1 and 2, which were ranked 3th and

4th, respectively) used similar features to our method (group 4). In

contrast to our approach, the group 1 did not fit their model directly

toward the experimental ΔΨ values. They trained a classification model

to predict the sign of ΔΨ and then used the predicted scores to fit into

the ΔΨ. The group 2 did not employ a cross‐validation to optimize the

hyperparameters for their random forest model, which might cause a lack

TABLE 3 The performance of methods to discriminate pathogenic
from normal synonymous mutations

Data set Methods AUC p valuea

SynonMut‐PSI PredPSI‐SVR 0.579 –

PredPSI‐SVR‐
noPSI

0.508 − (.064)b

SPANR 0.495 0.389 (.036)

MaxEntScan 0.543 0.150 (.220)

SynonMut‐complete PredPSI‐SVR‐
noPSI

0.575 –

SPANR 0.534 .004

MaxEntScan 0.549 .049

Abbreviations: AUC, area under ROC; ROC, receiver operating

characteristic curves.
aThe significance of difference between methods compared to

PredPSI‐SVR‐noPSI.
bPredPSI‐SVR (values in the parenthesis) according to the statistical test

(Hanley & McNeil, 1982).
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of generalization to the test set. The group 3 (ranked 5th) did not provide

implementation details. On the other side, the group 5 made the best

predictions by using their developed MMSplice method (Cheng et al.,

2019). In their method, six deep neural networks have been trained to

extract features of splice donor, splice acceptor, 5′ exon, 3′ exon, 5′intron,
and 3′ intron, which were later combined by a simple linear regression to

predict ΔΨ. With the benefit of utilizing deep‐learning techniques, the

method achieved a PCC of 0.675 for the test set. Therefore, the

predictions might be further improved by coupling merits of different

methods, for example, using features mined from deep learning combined

with our used knowledge‐based information like conservation scores, and

training a nonlinear model with machine learning methods like SVM, as

used in our method.

We also noticed that the removal of mutations with small Ψ

changes lead to a better correlation between the predicted and

experimental values. By removing ΔΨ with absolute values less

than two times of the standard deviation, increasing correlations

were observed for all methods on the remained 53 mutations. For

example, our PredPSI‐SVR achieved an increase in PCC from

0.566 to 0.665 and the top method MMSplice increased from

0.675 to 0.782. This is likely because the mutations with a small

change of Ψ might be affected by many other factors with

relatively weak impact, while current methods can only capture

the dominant factors due to the limited data.

At present, PredPSI‐SVR does not include features of branch

point sequences and pre‐mRNA secondary structure effectively due

to the limit by relatively small numbers of samples in the data set.

Moreover, the small number of samples prevented us from using

more powerful classification algorithms like deep learning. Another

limitation of our method is its need for experimental Ψ of exons.

Without experimental Ψ , PCCs on the training set and test set

dropped by about 0.1. Currently only RNA‐seq data from the Human

BodyMap Project 2.0 project was used, and many exons cannot be

found from the MISO analysis due to sequencing depth. With

advances in sequencing technology, an increasing number of public

databases are becoming available. This enables us to capture more

accurate Ψ for exons, and thus to improve the performance.

Moreover, the tissue dependence of Ψ reminds us to use tissue‐
specific Ψ in PredPSI‐SVR to better discover pathogenic variants in

specific diseases.

The PredPSI‐SVR method is available with a standalone version

on https://github.com/chenkenbio/PredPSI‐SVR. The program runs

on Linux/Unix system with input of variants in the VCF format.
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