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Abstract

Protein secondary structure prediction began in 1951 when Pauling and Corey predicted helical and sheet conformations for
protein polypeptide backbone even before the first protein structure was determined. Sixty-five years later, powerful new
methods breathe new life into this field. The highest three-state accuracy without relying on structure templates is now at
82-84%, a number unthinkable just a few years ago. These improvements came from increasingly larger databases of pro-
tein sequences and structures for training, the use of template secondary structure information and more powerful deep
learning techniques. As we are approaching to the theoretical limit of three-state prediction (88-90%), alternative to second-
ary structure prediction (prediction of backbone torsion angles and Cu-atom-based angles and torsion angles) not only has
more room for further improvement but also allows direct prediction of three-dimensional fragment structures with con-
stantly improved accuracy. About 20% of all 40-residue fragments in a database of 1199 non-redundant proteins have <6 A
root-mean-squared distance from the native conformations by SPIDER2. More powerful deep learning methods with im-
proved capability of capturing long-range interactions begin to emerge as the next generation of techniques for secondary
structure prediction. The time has come to finish off the final stretch of the long march towards protein secondary structure
prediction.
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Introduction

Proteins are linear polymeric chains made of protein-specific
sequences of 20 amino acid residue types. Proteins can perform
a wide variety of molecular functions [1] ranging from molecu-
lar recognition, catalysis, molecular motors, to structural sup-
port, in part because they can fold into many different three-
dimensional structural shapes [2, 3]. Thus, understanding how
proteins function requires knowledge of their structures. Over
200 million protein sequences have been collected in Genbank,
[4] while only ~100 000 protein structures have been deposited
in Protein Data Bank, the central depository of all protein struc-
tures [5]. The gulf between the number of known sequences and
the number of determined structures indicates that predicting
protein structures computationally is the only practical solu-
tion, considering the high cost of protein structure determin-
ation (~$100 000 per protein [6]) and low cost of whole-genome
sequencing (~$1000) [7]. However, it remains challenging to pre-
dict three-dimensional structures from protein sequences reli-
ably without using known structures as templates [8, 9]. Thus, it
is necessary to divide the protein structure prediction problem
into smaller subproblems with the hope that the solutions to
the subproblems will lead to the solution of the bigger problem
(divide and conquer).

The most well-known subproblem of protein structure pre-
diction is the prediction of protein secondary structure, or the
local conformation of a protein’s polypeptide backbone.
Solution of the secondary structure prediction problem is im-
portant in its own right because protein tertiary structures are
classified into structural folds according to how secondary
structure elements (helices and sheets) are packed and permu-
tated [10, 11]. In other words, knowing secondary structures
provides an approximate idea about overall structural catego-
ries. Moreover, secondary structure plays an important role in
determining how proteins fold [12, 13] and how fast they fold
[14]. As a result, the accuracy of protein secondary structure
prediction directly impacts the accuracy of protein structure
prediction (template-based or template-free) [15-18], prediction
of solvent exposure of amino acid residues [19-21] and discrim-
ination of structured from unstructured, intrinsically disordered
protein regions [22, 23]. In particular, predicted probabilities of
secondary structures in those intrinsically unstructured or dis-
ordered proteins (i.e. absence of unique tertiary structures) can
provide clues for functional sites in their unstructured regions
by binding or induced folding [24, 25]. In addition, because struc-
tures are more conserved than sequences and structures deter-
mine functions, predicted secondary structures are proven
useful in protein sequence alignment [26, 27] and protein func-
tion prediction [28, 29]. Owing to the importance of secondary
structure in protein structure stability and function, disease-
causing mutations are often located in regions with secondary
structures [30, 31]. As a result, predicted secondary structures
are an important feature in the methods for discriminating
disease-causing from neutral genetic variations (missense mu-
tations [32] and small insertions/deletions (nonframeshifting
[33] or frameshifting and nonsense mutations [34]).

Historically, secondary structure prediction predates the first
protein structure (myoglobin) determined by X-ray crystallog-
raphy in 1958 [35]. By analysing possible hydrogen-bonding pat-
terns, Pauling and Corey [36, 37] proposed in 1951 that the
dominant secondary structural motifs were a-helices (hydrogen
bonds between the ith and the i+ 4th residues) and B-sheets (se-
quential hydrogen bonding between neighbouring segments ra-
ther than within a local segment). This hypothesis has since
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Figure 1. New methods continue in development for secondary structure predic-
tion. The number of publications on protein secondary structure prediction per
year and its cumulative increment.

been confirmed by experimentally solved structures. Typically,
high-resolution X-ray structures [38-40] were extracted to build
training and test sets for secondary structure prediction, al-
though other experimental techniques such as nuclear mag-
netic resonance (NMR) chemical shifts [41, 42], circular
dichroism spectra [43, 44| and infrared spectroscopy [45, 46]
have also been used to infer secondary structure and assess pre-
dicted ones. Despite long 65 years of history, secondary struc-
ture prediction continues to be highly active with steady
improvement of accuracy till today. This raises the question of
whether substantial further improvement in tackling this prob-
lem can be sustained. Because secondary structure prediction
has been reviewed periodically [47-52], we will provide a discus-
sion of only recent studies and the future prospects.

Secondary structure prediction continues with
slowly rising accuracy

Figure 1 shows the number of publications per year and its ac-
cumulation since 1970s. These data were obtained by a title key-
word search on protein secondary structure prediction in Web
of Science on 11 August 2016, followed by manual inspection.
Subject to the limitation of the keyword search, 266 methods
were reported between 1973 and 2016. Despite the long history
of method development, about five new methods have still
been published every year since 2010.

Persistent interest in secondary structure prediction is
largely because of the ability to make progress, albeit rather
slowly, in improving the accuracy of secondary structure predic-
tion. Accuracy of secondary structure prediction depends on
how secondary structure is defined. The most commonly used
standard is the secondary structure assignment method
Dictionary of Secondary Structure of Proteins (DSSP) [53], which
automatically assigns secondary structure into eight states ac-
cording to hydrogen-bonding patterns. These eight states are
often further simplified into three states of helix, sheet and coil.
The most widely used convention is that helix is designated as
G (310 helix), H (a-helix) and I (n-helix); sheet as B (isolated
bridge) and E (extended sheet); and all other states designated
as a coil. Here, we focus on de novo secondary structure predic-
tion in which methods were trained on labelled non-
homologous sequences that have <25% sequence identity from
each other. The reported three-state accuracy of secondary
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structure prediction has gradually risen from 69.7% by PHD in
1993 [54], 76.5% by PSIPRED [55] in 1999, 80% by Structural
Property prediction with Integrated Neural nEtwork (SPINE) [56]
in 2007, 82% by Structural Property prediction with Integrated
DEep neuRal network 2 (SPIDER?2) [57] in 2015, to 84% for several
test data sets by Deep Convolution Neural Field network
(DeepCNF) [58] in 2016. Although accuracies reported by differ-
ent methods are not always directly comparable because of dif-
ferent data sets being used, there is a clear trend of a slow but
steady improvement over the past 24 years.

What is the theoretical limit of secondary
structure prediction?

The steady improvement re-raises the question regarding how
much further we can go in this long march of protein secondary
structure prediction. One limit imposed on secondary structure
prediction is the somewhat arbitrary definition of three states.
Ideal helices and sheets do not exist, and there are no clear
boundaries between helix and coil nor sheet and coil states. It
was shown that structural homologies differ by about 12% in
secondary structure assignment [59] for those with >30% se-
quence identity [60]. This assignment inconsistency would limit
the highest possible accuracy to about 88-90% [47].

Here, we re-examined the theoretical limit of secondary
structure prediction by investigating the conservation of sec-
ondary structure among homologous proteins. The accuracy of
state-of-the-art methods for secondary structure prediction
relies on a sequence profile derived from multiple sequence
alignment of homologous sequences, typically from position-
specific substitution matrix (PSSM) calculated by Position-
Specific Iterative Basic Local Alignment Search Tool (PSI-BLAST)
[61]. Using PSSM implicitly assumes that homologous se-
quences have the same secondary structures. We used PSI-
BLAST to scan homologous proteins in protein databank with E-
value < 1E-3 against the 1199 proteins that were used as the test
set for SPIDER for predicting Ca-based backbone angles [62]. We
kept only the non-redundant (<90% sequence identity) high-
resolution query chains (<3.0 A) solved by X-ray crystallography
for the analysis. The percentages of agreement on secondary
structure between homologous sequence pairs were averaged
for a given sequence identity (individual) or over all sequence
identities (cumulative) higher than the given sequence identity.
Figure 2 shows how the agreement between secondary struc-
tures changes as a function of sequence identity based on local
sequence alignment. The agreement is >88% for >30% sequence
identities, a commonly used cut-off for sequence homologies of
proteins. This result is consistent with the 88-90% limit sug-
gested previously [59].

The above limit, however, is most likely applicable to bound-
ary regions, rather than internal regions of secondary struc-
tures. This is because the number of helices and sheets are
more conserved than the lengths of helices and sheets. The in-
ternal regions of secondary structures are less likely subjected
to assignment errors. This statement is confirmed by a detailed
analysis of prediction errors at boundaries and in internal re-
gions of helical, sheet and coil regions below.

Three generations of methods for improving
secondary structure prediction

Secondary structure prediction techniques have been classified
into three generations [47]. In the first generation, secondary
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Figure 2. Conservation of secondary structure in homologous sequences. The
average consistency on secondary structure of homologous sequences at a given
sequence identity between two sequences compared or over all compared se-
quences above a given sequence identity (cumulative from high sequence
identity).

structures were predicted from a protein sequence according to
statistical propensities of amino acid residues towards a specific
secondary structure element [63-65]. The most representative
of this type of first-generation methods is the Chou-Fasman
method [65], which combined propensities with heuristic rules.
The second-generation methods, represented by the Garnier-
Osguthorpe-Robson (GOR) method [66] and the Lim method [67],
used a sliding window of neighbouring residues and various the-
oretical algorithms such as statistical information [66, 68, 69],
graph theory [70], neural networks [71, 72], logic-based machine
learning techniques [73] and nearest neighbouring methods [74].
The use of information from neighbouring residues is made pos-
sible as more protein structures became available to estimate
pairwise, triplet or longer-segment frequencies. The third gener-
ation of techniques is characterized by using evolutionary infor-
mation derived from alignment of multiple homologous
sequences [54, 75]. During this period, new computational algo-
rithms have been implemented. Examples are support vector
machines [76, 77|, Bayesian or hidden semi-Markov network [78,
79] and conditional random fields for combined prediction [80].
Out of these methods, neural-network-based models have been
seen the highest reported accuracy [54-58].

Where does accuracy improvement
come from?

Most early improvements in prediction were achieved by intro-
ducing better features. Early methods used features derived
from single-residue properties [63-65]. This was followed by the
inclusion of neighbouring residues within a window [68, 69, 71,
81], and later by a sequence evolution profile derived from mul-
tiple sequence alignment [75]. Sequence profiles, such as the
PSSM from PSI-BLAST [61], contain conserved structural infor-
mation across homologous sequences. Using sequence profiles
was the main driving force for three-state accuracy going be-
yond 70% [54-56, 82]. In particular, SPINE [56] achieved 80% by
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using classical neural networks trained on a large data set of
2640 non-redundant proteins with PSSM and physiochemical
structural properties as its input.

Many recent methods improve accuracy by using actual sec-
ondary structures of homologous sequences (known as
template-based approaches). Examples are HYPROSP [83],
PROTEUS [84], MUPRED [85], DISTILL [86], GOR V [87], SPSSMPred
[88], FLOPRED [89] and Protein Secondary Structure Prediction
with Homology Analysis (SSpro) [90]. An accuracy of >90% can
be achieved for some proteins by simply taking the secondary
structures of their highly homologous sequences as shown in
Figure 2. However, the majority of protein sequences do not
have deposited structures of their homologous sequences.
Thus, we focus on the methods trained and tested on non-
redundant sets of <25% sequence identity.

Several methods were able to reach 81% or higher accuracy
by simply updating sequences and structure databases and
making minor algorithmic updates. Examples are PSIPRED 3.0
[91] and Jpred 3.0 [92]. Jpred4 was able to achieve 82% for a small
representative set (150 sequences from 150 superfamilies not
used in training) by training on 1338 proteins [93].

SPINE-X [94] improves over PSIPRED 3.2 by 0.7-2% through
incorporating predicted backbone torsion angles and solvent ac-
cessibility iteratively. First, a neural network was used to predict
secondary structure by using PSSM and a set of physiochemical
properties of amino acids (PPAA). Then, PSSM and PPAA to-
gether with predicted secondary structures were used to predict
solvent accessibility. Afterwards, PSSM and PPAA together with
predicted secondary structures and predicted solvent accessibil-
ity were used to predict torsion angles. These predicted struc-
tural properties were used together with PSSM and PPAA to
predict secondary structure for the second time. This procedure
is repeated so that the secondary structure is predicted for a
third time. This iterative method achieves 82% in 10-fold cross
validation for a non-redundant data set of 2640 proteins (<25%
sequence identity) and 81% on an independent test set of 1833
protein chains and 117 targets from the critical assessment of
structure prediction (CASP9). Interestingly, SPINE-X is more ac-
curate in predicting helical residues, whereas PSIPRED is more
accurate in predicting coil residues.

Porter 4.0 [95] used two cascaded bidirectional recurrent
neural networks: one for prediction and one for filtering. The
method was trained and benchmarked by 5-fold cross-valid-
ation on a set of 7522 non-redundant proteins (<25% sequence
identity) and a high-resolution subset of 2218 proteins (better
than 2.5 A). The three-state cross-validation accuracy is 82%
for the full set and 81% for the high-resolution set.
Independent testing and comparison with other methods was
not available.

SeCOndaRy structure PredictlON (SCORPION) [96] used a
data set of 166 633 high-resolution proteins at 50% sequence
identity cut-off to collect triplet probabilities with a sequence
separation of seven residues or less and calculated context-
dependent pseudopotentials. Then, three separate neural net-
works (PSSM + pseudopotential, predicted secondary structure
filter, and PSSM + modified pseudopotentials) were trained on
7987 chains at 25% sequence identity cut-off. Seven-fold cross-
validation on 7987 chains achieves an accuracy of 82.7%, com-
pared with 80.3% without the context-based pseudopotentials.
It further shows that SCORPION is more accurate in predicting
helical and sheet residues but less so in coil residues. The
method had significantly better overall accuracy than several
methods compared including Jpred, Porter and PSIPRED when
independently tested by several small data sets.

SPIDER2 [57] applied deep neural networks to secondary
structure prediction. A deep neural network refers to neural net-
works with more than two hidden layers [97]. Three layers were
used in SPIDER2. SPIDER2, similar to SPINE X, used an iterative
improvement of secondary structure, backbone torsion angles
and solvent accessibility at the same time in three iterations.
The method achieves 81.8% for the independent test on 1199
high-resolution proteins (<2.0A). When comparing SPIDER2
with SPINE-X, PSIPRED 3.3 and SCORPION in the independent
test set of 1199 proteins as well as the CASP11 set, about >1%
improvement over other methods was observed. SPIDER2 was
not the first method that used deep neural networks for second-
ary structure prediction but is the most accurate according to
reported accuracy [98, 99].

DeepCNF [58] is the first method using deep convolutional
neural fields for secondary structure prediction. It stacks deep
convolutional neural networks [100] with a conditional random-
field model [101] on top as the output layer. The deep convolu-
tional neural networks were used to capture the complex se-
quence-structure relation of longer sequence separation than a
typical deep neural network, whereas the conditional random-
field model allows detection of interdependence of secondary
structure among neighbouring residues. It shows that five hid-
den layers and an 11-residue window were needed to achieve
the best training. The method was trained on 5600 proteins
with 25% sequence identity cut-off within itself and to several
test sets including CASP targets. The accuracy of test sets ranges
from 82.3 to 85.4%, which improves over several methods
including SPINE-X, PSIPRED and Jpred by 1-4%, depending on
the data sets.

The accuracy of state-of-the art methods on
the same independent test sets

To compare these state-of-the-art techniques by the same inde-
pendent test, we downloaded on 20 September 2016 all protein
structures determined by X-ray crystallography with resolution
better than 3 A and released after 1 January 2016. We used 3 A
resolution as a cut-off because we would like to have >100
structures, and a previous study showed that the accuracy of
secondary structure prediction is only weakly dependent on X-
ray resolution (0.1% difference from 2 to 3 A cut-off) [56]. To pro-
vide a truly independent test set for all methods accepted before
2016 (including DeepCNF), we have removed sequences that
have >30% identity to those released before 2016 according to
CD-hit [102]. The final data set contains 115 proteins (TS115)
with sequence lengths ranging from 43 to 1085 (the list is avail-
able at http://sparks-lab.org). Here, we have assumed that all
published methods were not automatically re-trained with
newly deposited proteins in 2016.

We conducted prediction of Jpred4, SCORPION, Porter4.0,
PSIPRED 3.3, SPINE X, SPIDER2 and DeepCNF using their respect-
ive online servers except that a stand-alone version of
SCORPION was used because the server was not working at the
time of testing. As shown in Table 1, the three-state accuracies
for these newly released targets are 77.1% by Jpred4, 80.1% by
SPINE X, 80.2% by PSIPRED 3.3, 81.7% by SCORPION, 81.9% by
SPIDER2, 82.0% by Porter 4.0 and 82.3% by DeepCNF. The overall
accuracies for different methods are consistent with large-scale
tests reported in respective studies. According to the perform-
ance in individual proteins, DeepCNF is statistically signifi-
cantly different from all methods (P-value <0.05) except Porter
4.0, whereas SPIDER2? is not statistically significantly different
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Table 1. Method comparison based on Q3 using newly released structures (TS115) and CASP12 targets (15 proteins) for secondary structure

prediction
Data set Method CASP12 Server location
Q3 P-value® Q3 P-value?
Jpred4 0.771° 0.0007 0.751 0.04 http://www.compbio.dundee.ac.uk/jpred4/index.html
SPINE X 0.801 0.0002 0.769 0.006 http://sparks-lab.org/SPINE-X/
PSIPRED 3.3 0.802 0.12 0.780 0.19 http://distillf.ucd.ie/porterpaleale/
SCORPION 0.817 0.45 0.805 0.44 Stand-alone version from http://hpcr.cs.odu.edu/c3scorpion/
SPIDER2 0.819 NA 0.798 NA http://sparks-lab.org/server/SPIDER2/
PORTER 4.0 0.820 0.17 0.798 0.67 http://distillf.ucd.ie/porterpaleale/
DeepCNF 0.823 0.01 0.821 0.14 http://raptorx2.uchicago.edu/StructurePropertyPred/predict/
Note.

2paired t-test from SPIDER2.

YJpred only predicts the sequence <800 residues. For TS115, there is one sequence (ShdtA) with 1085 residues. ShdtA was divided into two chains with 800 residues and

285 residues, respectively.

from Porter 4.0, SCORPION and PSIPRED 3.3. Obviously larger in-
dependent data sets are needed to increase statistical power to
separate these methods. A consensus prediction of top three
(DeepCNF, Porter 4.0 and SPIDER2) or top five methods
(DeepCNF, Porter 4.0, SPIDER2, SCORPION and PSIPRED3.3)
achieved an overall accuracy of 83.5 and 83.6%, respectively,
>82.3% by DeepCNF, but not statistically significantly different
from DeepCNF. To confirm the weak dependence on X-ray reso-
lution, we found that the accuracy of SPIDER2 is 81.93% for
structures with <2.5 A resolution, compared with 81.87% for
structures with <3 A resolution.

We also obtained the CASP12 (the protein targets from the
12th biannual meeting of Critical Assessment of Structure
Prediction techniques) targets released in 2016 from http://
www.predictioncenter.org/casp12/targetlist.cgi. There are 23
targets with structures accessible in the PDB. After removing
the structures determined by the NMR technique and those
low-resolution structures by X-ray crystallography (>3.5 A), the
final data set contains 15 targets. Their PDB and chain IDs are
4ympA, 5a7dB, 5a7dL, 5aotA, SereA, 5fjlA, 5j4aA, 5j4aB, 5j5VA,
5j5vB, 5j5vC, 5jmbA, 5jmuA, 5kkpA and 5ko9A. These structures
are considered to be an independent test because they were
carefully selected to not be homologous with any structures
published before May 2016 by the CASP organizer. As shown in
Table 1, the three-state accuracies for these 15 CASP12 targets
are 75.1% by Jpred4, 76.9% by SPINE X, 78.0% by PSIPRED 3.3, 79.8
% by Porter 4.0, 79.8% by SPIDER2, 80.5% by SCORPION and 82.1%
by DeepCNF. The overall relative accuracies for different meth-
ods are consistent with the larger data set of 115 proteins.
However, because of the small test set, paired t-test suggests
that only the differences between SPIDER2 and Jpred4 and be-
tween SPIDER2 and SPINE X are statistically significant with P-
value <0.05. The difference between DeepCNF and SPIDER2 or
between SCORPION and SPIDER? is not statistically significant.

It is noted that the accuracy of 79.8-82.1% by Porter 4.0,
SPIDER?2 and DeepCNF in CASP is lower than the larger data set
of 115 proteins as well as what was claimed for other test sets in
their respectively original publications. This is in part because
of the small test set of 15 targets. However, low performance for
CASP targets has been observed earlier [57, 58, 94], largely be-
cause of the fact that remote homologies were removed by PSI-
BLAST for CASP targets. New orphan sequences, which are
highly dissimilar to existing sequences with known structures,
likely have few sequence neighbours to yield effective sequence
profiles and may have adopted less popular structural folds [11].

Nevertheless, it has been shown that predicted secondary struc-
tures for CASP targets are usually more accurate than those
derived from model structures predicted by various structure
prediction techniques (template-based or template-free) [57,
94].

Where are the errors in secondary structure
prediction?

Helices involve hydrogen bonds of sequence neighbours,
whereas sheets are defined based on hydrogen bonds between
amino acid residues that are not necessary sequence neigh-
bours. As a result, helical residues are more accurately predicted
than sheet residues as expected [47]. For example, the accuracy
of SPIDER? for the CASP11 data set is 86.2% for helix, 75.8% for
sheet and 78.6% for coil [57]. One can also expect that the possi-
bility of confusion between helical and sheet residues is lower
than the confusion between helical and coil residues and be-
tween sheet and coil residues. Indeed, the confusion between
helix and sheet residues is 1-2% and between coil and helix (or
sheet) residues is 8-9% [56, 57, 94]. The larger confusion be-
tween coils and secondary structure elements raises the possi-
bility that the boundaries (capping) of helices and sheets have
larger errors. Several methods were developed to predict cap-
ping regions [103, 104].

Table 2 analysed errors of predicted secondary structures in
TS115 and CASP12 data sets by using SPIDER2 and DeepCNF as
examples. Both showed low confusion between helix and sheet
(<1%), followed by ~7% confusion between sheet and coil and
~10% confusion between helix and coil. Interestingly, there is
significantly less confusion between sheets and coils than be-
tween helices and coils. DeepCNF is more accurate in discrimi-
nating coils from sheets and helices from sheets, whereas
SPIDER2 is more accurate in separating helices from coils. We
further confirmed that errors in helical and sheet boundaries
are significantly larger than errors in the interior of a helix or a
sheet. Here, we defined a helical/sheet residue as internal if its
two nearest neighbouring residues are also helical/sheet resi-
dues and as a boundary if one or both of the nearest neighbours
has a different secondary structural assignment. As shown in
Table 2, about 10-11% helical errors are in helical internal re-
gions but 38-43% are at boundaries. The same is true for sheet
prediction with the largest errors (~38%) at boundaries. On the
other hand, errors on coil residues less depend on their
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Table 2. Overall misclassification errors of H, E and C states and the
errors in the internal and at the boundary region of secondary struc-
ture elements along with prediction accuracy in the internal and at
boundary regions of secondary structures for newly released struc-

tures (TS115) by SPIDER2 and DeepCNF

Method SPIDER2 (%) DeepCNF (%)
H<«<=E 0.96 0.52

H<C 9.5 10.1

E<C 7.6 7.0

H/E/C (internal) 9.7/14.5/14.3 11.0/11.9/10.9
H/E/C (boundary) 37.9/38.3/24.3 43.1/37.8/23.4
Q3 (internal) 87.9 88.9

Q3 (boundary) 68.6 67.9

boundaries, consistent with their flexibility in conformations.
The overall accuracies (Q3) are 88% by SPIDER2 and 89% by
DeepCNF in internal regions of secondary structures and 69% by
SPIDER2 and 68% by DeepCNF at boundaries.

Another possible source of errors is the short chameleon se-
quences that have different types of secondary structure in dif-
ferent proteins [105, 106]. These sequences are implicated in
amyloid-related diseases [107]. However, several studies [108-
110] have indicated that chameleon sequences were predicted
as accurately as other regions, likely because a typical sliding
window (~20 residues) is much longer than 10 residues, which
is the longest length of chameleon sequences found [106]. This
suggests that local interactions play the dominant role in deter-
mining the secondary structure of short chameleon sequences.

Hydrophobic interactions drive folding of soluble proteins
[111] that have a hydrophobic core and hydrophilic surface.
Helices and sheets buried deep inside a hydrophobic core have
a similar folding environment as transmembrane helices [112,
113]. There is a possibility that machine learning techniques
may confuse hydrophobic sheets inside protein cores with
transmembrane helical segments and reduce the accuracy of
beta-sheet prediction. But this possibility is low, as Table 2
shows that the confusion between helices and sheets is <1%.

To further examine this possibility, we used results of TS115
by SPIDER2 as an example. Figure 3A shows that the accuracies
in fully buried regions of proteins are the highest for helices and
sheets but the lowest for coils. The confusion between helices
and sheets is nearly independent of solvent accessibility
(Figure 3B). Thus, there is little evidence of confusion between
transmembrane helices and hydrophobic sheets inside protein
cores. On the other hand, exposed helices and sheets are more
difficult to predict and easier to confuse with coil residues.

The largest source of errors, however, is likely because of the
inability of current methods in incorporating the effect of non-
local interactions. Non-local interactions are the interactions
between residues that are close in three-dimensional space but
far from each other in their respective sequence positions.
Entropy densities of primary and secondary structure se-
quences suggested that local inter-sequence correlations con-
tributed only one-fourth of the total information needed to
determine the secondary structure [114]. Kihara showed that
the accuracy of predicted helical residues and sheet residues is
negatively correlated with residue contact order, or number of
non-local contacts [115]. This is consistent with the fact that
inputting native non-local contacts into an interaction-enriched
bidirectional recurrent neural network improves secondary
structure prediction accuracy from 79.9 to 84.6% [116, 117].
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Figure 3. The dependence of accuracies and misclassifications on solvent acces-
sibility. The accuracy of predicting helices (Qy), sheets (Qg) and coils (Qc) and the
overall accuracy (Qs) (A) and the misclassifications of helices to coils, sheets,
sheets to coils and helices and coils to helices and sheets (B) as a function of
solvent accessibility for TS115 by SPIDER2.
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Figure 4. The dependence of accuracy on non-local contacts. The secondary
structure accuracy as a function of the number of non-local contacts (i — j| > 19)
for the independent test set (TS1199) by SPINE X and SPIDER2.

Overriding predicted secondary structures has also led to im-
proved model structures [118-120].

To further illustrate the dependence of secondary structure
on non-local contacts, Figure 4 shows the dependence of Q3 as
a function of number of non-local contacts (defined as |i—j|>19
and the Go-Co distance <8A). We chose a cut-off of 19-residue
separation because most secondary structure prediction used a
window size of 10-20 residues. Because TS115 only has a few
hundreds of residues at seven non-local contacts or more, we
used the independent test set of 1199 high-resolution proteins
from SPIDER [62]. Each statistical bin contains at least 12 500
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Table 3. Method comparison based on Q8 using newly released structures (TS115) and CASP12 targets (15 proteins) for eight-state secondary

structure prediction

Data set Method TS115 CASP12 Server location
Q8 P-value® Q8 P-value?
SSPRO8 0.68 3E-9 0.69 0.014 http://scratch.proteomics.ics.uci.edu
DeepCNF 0.72 NA 0.73 NA http://raptorx2.uchicago.edu/StructurePropertyPred/predict/

#Paired-t test from DeepCNF.

residues. The three-state accuracy of secondary structure pre-
diction of SPINE X as well as SPIDER2 decreases nearly linearly
when the number of non-local contacts is >5. This happens
despite that SPIDER2 used a deep learning neural network, con-
firming the failure of regular and deep neural networks in cap-
turing long-range interactions.

Alternatives to discrete three-state secondary
structure prediction

Although secondary structure prediction in three states is im-
portant, its limitation cannot be overlooked. This is because
three secondary structure states are only a coarse-grained rep-
resentation of the backbone structure with helical and sheet
residues that often deviate significantly from standard helix
and sheet conformations. In fact, DSSP, the most widely used
secondary structure assignment program, defined eight states.
This leads to several recent methods dedicated to eight-state
prediction such as SSpro8 [121], RaptorXss8 [122], SCORPION [96,
123] and DeepCNF [58]. DeepCNF, in particular, pushed the
eight-state accuracy to beyond 70%.

Table 3 compares the performance of SSpro8 and DeepCNF
in eight-state performance for TS115 and CASP12 targets.
SCORPION was not included because its server is not working at
the time of testing. The accuracies according to Q8 are 68 and
69% for TS115 and CASP12, respectively, by SSpro8 and 72 and
73%, respectively, by DeepCNF. This table confirms that
DeepCNF achieved >70% accuracy in eight-state prediction.

However, the boundaries between different states are some-
what arbitrarily defined. Even in three states, different second-
ary assignment techniques can differ by as much as 15% [60].
Inconsistent assignment determines the theoretical limit of sec-
ondary structure prediction as discussed above. Moreover, pre-
dicted coil residues do not have a well-defined conformation.

Backbone structures can be defined continuously in three ro-
tational (torsion) angles along the C-N (), Co—N (¢) and Co—C (V)
bonds, respectively. w is approximately fixed at 180° for the
common trans and 0° for the rare cis conformation because of
rigid planar peptide groups. Thus, only two torsion angles per
residue are needed for defining a backbone structure. The first
continuous or real-value prediction of ¢ and |y was made by Xue
et al. in 2008 [124]. The mean absolute errors (MAEs) were 25°
for ¢ and 38 for \, respectively, based on 10-fold cross-
validation of 2640 high-resolution non-redundant proteins. The
angle accuracy has been substantially improved over the years
[94, 125, 126] with the highest accuracy reported by SPIDER2
(MAE = 19° for ¢ and 30° for | using an independent test of 1199
high-resolution non-redundant proteins) [57].

Table 4 examines the accuracy of angle prediction according
to MAE for different angles by SPINE X and SPIDER2. SPIDER2
yields a significant improvement in ¢ and | over SPINE X MAE
values for TS115 and CASP12 sets (18° for ¢ and 28-29° for V) are

slightly better than the reported MAE values (19° for ¢ and 30°
for ¢ using an independent test of 1199 high-resolution non-re-
dundant proteins).

Backbone torsion angles, however, are single-residue struc-
tural properties. By comparison, helical and sheet conform-
ations implied hydrogen bonding between two residues that are
separated in sequence positions (four for 3,9 helix, five for o-
helix and undefined for sheet residues). It is desirable to have
angles representing more than single residues. The peptide pla-
nar leads to the neighbouring Co atoms at about a fixed distance
of around 3.8 A from each other. Thus, the protein structure can
also be uniquely represented by two angles between
Coii_q— Co;— Coy 1 (0) for three-residue coupling and a dihedral
angle rotated about the Co; — Co; 1 bond (1) for four-residue cou-
pling. Such angles have been widely used in coarse-grained
modelling of dynamics, folding and assessment of protein
structures [127-132]. This representation is complementary to ¢
and \y angles (single residue) and secondary structures (>3 resi-
dues). SPIDER [62] was the first method for sequence-based pre-
diction of # and t and used a deep neural network. Its accuracy
was subsequently improved by SPIDER2 with an iterative learn-
ing of multiple structural properties simultaneously [57]. The
MAE values achieved by SPIDER2 are 8° for 6 and 32° for t using
an independent test of 1199 high-resolution non-redundant
proteins. As Table 4 shows, MAE values are 8° for 6 and 31° for t
for both TS115 and CASP12 sets, confirming the reported
accuracy.

The above results also raised a question about the potential
theoretical limit for sequence-based prediction. Similar to sec-
ondary structures in Figure 2, using homologous sequences for
predicting torsion angles would lead to 15.6° for ¢ and 19.4° for
\y based on MAE for homologous sequences of >30% sequence
identities, compared with 19° for ¢ and 30° for | by SPIDER2.
There is significant room for improving V, in particular.
Similarly, we found that MAE values for homologous sequences
of >30% sequence identities are 5° for 6 and 15.5° for ©, com-
pared with 8° for 6 and 32° for © by SPIDER2. Again, there is sig-
nificant room for improving t. One nice feature regarding
predicted angles is that it can be used to reconstruct the overall
backbone structure [57], some of which can achieve low root-
mean-squared distance (RMSD) without performing additional
optimization and refinement. One example at 40 residues long
is shown in Figure 5. The fraction of constructed three-
dimensional structures with a correct fold (RMSD < 6 A [133]) for
all 182 725 40-residue fragments in a data set of 1199 proteins is
small but highly significant (16.3% by predicted ¢ and \ angles
and 19.1% by predicted 6 and t angles). It indicates room for fur-
ther improvement in angle prediction, but is also in part be-
cause small angle shifts may lead to large changes in overall
structures. It is of interest to note that more fractions of accur-
ate structures are constructed by using predicted 6 and t angles.
This is likely because these two angles involve—three to four
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Table 4. Method comparison based on MAE using newly released structures (TS115) and CASP12 targets (15 proteins) for prediction of backbone

angles (¢, |, 6 and 1)

Data set Method TS115 CASP12 Server location
$() V() $ () V()
SPINE-X 194 329 19.1 33.2 http://sparks-lab.org/SPINE-X/
SPIDER2 18.2 29.3 17.8 28.1 http://sparks-lab.org/server/SPIDER2/
0() () 0() ()
SPIDER2 7.89 30.8 8.31 31.1 http://sparks-lab.org/server/SPIDER2/

Figure 5. Direct prediction of three-dimensional structure by predicted angles.
Structure (dark colour) constructed directly from ¢/ angles compared with na-
tive structure (light colour) for residues 24-63 from PDB 5fdy chain A.

residues, compared with only one residue in the case of ¢ and
angles.

Real-value prediction of angles, however, does not provide
an estimate of errors in predicted values. This is different from
multistate prediction where actual output values for different
states can be normalized as probabilities of predicted states.
Recently, Gao et al. [134] show that it is possible to predict the
absolute errors of predicted local backbone angles with reason-
able accuracy by deep neural networks with a Spearman correl-
ation coefficient between predicted and actual errors at about
0.6. Predicted errors were found useful for model quality
assessment.

Another source of errors in using predicted angles for model
construction is the rare cis-conformation of proline and other
residues (o = 0°), which leads to a reduction of the distance be-
tween two neighbouring Ca atoms from 3.81 to 2.94 A [135]. A
few methods were developed for predicting proline conform-
ations [136-140] with the highest reported accuracy at 72%.
Unfortunately, the links to two recently published Webservers
are no longer active for further examination. There is a clear
lack of development in o, despite the importance of cis-trans

conformational transitions in protein folding and function [141,
142].

All of the above methods for backbone structure prediction
were based on secondary structures derived from three-
dimensional structures determined by X-ray crystallography.
However, proteins are dynamic, and secondary structures will
be subjected to fluctuation in a solution, although they may be
stabilized in a crystal environment [143]. The S2D method [144]
opens a new avenue of secondary structure prediction by train-
ing on the probability distributions of secondary structure elem-
ents in disordered states derived from NMR chemical shifts for
2223 protein sequences. This technique is based on three separ-
ate single hidden layer feedforward neural networks, two of
which used different window sizes for three-state prediction,
while the remaining neural network was used to incorporate
global secondary structure contents for final prediction. The
method can also identify intrinsically disordered proteins. In
addition, it yielded a three-state accuracy at about 79% for a
data set of 1833 structured protein chains, validating the use of
secondary structure probabilities derived from chemical shifts.

Future perspective

Secondary structure prediction has reached an accuracy (about
84%) that is close to the theoretical limit (~88%). Can we make
the last stretch of this long-standing challenge? Recent accuracy
improvements [91-93, 95] have resulted from increasingly larger
sequence [4] and structural databases [5, 145], more sophisti-
cated deep learning neural networks [57, 58], and the use of
structural template information in whole [83-90] or in frag-
ments [96, 123]. As the number of protein sequences, along with
the number of solved structures, continues to rise exponen-
tially, the secondary structure prediction accuracy is likely to
continue its incremental improvement. One main obstacle,
however, is the difficulty in capturing non-local interactions be-
tween those residues that are close in three-dimensional space
but far from each other in their respective sequence positions
[115]. All existing techniques have relied on window-based fea-
tures to capture ‘non-local’ interactions limited to 10-30 amino
acid residues apart. This is certainly not sufficient for medium
to large proteins, in particular.

Non-local interactions can be described by residue-residue
contact maps. Contact maps can be predicted from correlated
mutations or evolution coupling [146-149], assuming that muta-
tions are correlated because of close proximity in structure.
This type of method is highly accurate for large protein families
with thousands of sequences. A recent study further found that
the codon-level information has added benefit for improving
contact prediction [150]. Many machine learning techniques
with or without evolutionary coupling techniques (for recent re-
views, see [151, 152]) were also developed for contact map
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prediction, and their accuracy is assessed in biannual CASP
meetings, with the best precision at about 30% [152, 153].
However, how to take advantage of these predicted non-local
contacts (or structures) for improving secondary structure pre-
diction remains to be further explored [118, 154], perhaps in the
context of coupling of secondary and tertiary structure predic-
tion [13, 120, 155].

In 1997, Hochreiter and Schmidhuber [156] showed that use-
ful long-range interactions between a series of time-resolved
events can be memorized by enforcing the constant error flow,
regardless of the time lapse. This long short-term memory
(LSTM) network was demonstrated by its ability to capture long-
range dependencies in bidirectional recurrent neural network
applications [157] for state-of-the-art interpretation and predic-
tion, most notably in speech- and image-related problems
[158, 159]. Such a network should be able to capture non-local
interactions in a protein without using a sequence window.
Indeed, the application of the LSTM network to protein dis-
order prediction has confirmed its improvement over regular
neural networks in detecting structured and unstructured re-
gions [160]. Our initial application (Heffernan et al., submitted)
to protein secondary structure and backbone angle prediction
(SPIDER3) has produced a three-state accuracy of 83.9% for
the independent test set TS115 along with a 10% reduction
of MAEs for ¢, ¥ and t angles without expanding the training
database. Moreover, 27% of 182 724 40-residue fragments
built by predicted 6 and t angles are <6 A RMSD away from
their native conformations. More importantly, its improvement
over SPIDER2 is the largest for residues with the highest
number of non-local contacts (Ji—j|>19). This result signals the
emergence of the fourth-generation deep learning-based meth-
ods that are promising to complete the last stretch of long
march in secondary (and therefore tertiary) structure
prediction.

Key Points

* The accuracy of state-of-the-art three-state secondary
structure prediction is at all time high of 82-84%.

* The improvement comes from large databases, the
use of template and powerful deep learning
techniques.

* Alternative to secondary structure prediction (back-
bone angle prediction) has more room for further
improvement.

* Future is bright as next-generation deep learning tech-
niques can remember long-range interactions.
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